強(qiáng)化訓(xùn)練人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】章節(jié)練習(xí)試卷_第1頁
強(qiáng)化訓(xùn)練人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】章節(jié)練習(xí)試卷_第2頁
強(qiáng)化訓(xùn)練人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】章節(jié)練習(xí)試卷_第3頁
強(qiáng)化訓(xùn)練人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】章節(jié)練習(xí)試卷_第4頁
強(qiáng)化訓(xùn)練人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】章節(jié)練習(xí)試卷_第5頁
已閱讀5頁,還剩34頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】章節(jié)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、在下列面點(diǎn)烘焙模具中,其圖案是中心對稱圖形的是(

)A. B.C. D.2、如圖,在中,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)與點(diǎn)是對應(yīng)點(diǎn),且點(diǎn)在同一條直線上;則的長為(

)A. B. C. D.3、如圖,在中,,將繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到,點(diǎn)A,B的對應(yīng)點(diǎn)分別為D,E,連接.當(dāng)點(diǎn)A,D,E在同一條直線上時(shí),下列結(jié)論一定正確的是(

)A. B. C. D.4、如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,若且于點(diǎn),則的度數(shù)為(

)A. B. C. D.5、如圖,在方格紙上建立的平面直角坐標(biāo)系中,將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90°,得到,則點(diǎn)的坐標(biāo)為(

).A. B.C. D.6、如圖,與關(guān)于成中心對稱,不一定成立的結(jié)論是(

)A. B.C. D.7、把圖中的交通標(biāo)志圖案繞著它的中心旋轉(zhuǎn)一定角度后與自身重合,則這個旋轉(zhuǎn)角度至少為(

)A.30° B.90° C.120° D.180°8、在平面直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是(

)A. B. C. D.9、下列交通標(biāo)識中,不是軸對稱圖形,是中心對稱圖形的是()A. B. C. D.10、圖,在中,,將繞頂點(diǎn)順時(shí)針旋轉(zhuǎn)到,當(dāng)首次經(jīng)過頂點(diǎn)時(shí),旋轉(zhuǎn)角(

)A.30° B.40° C.45° D.60°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、若點(diǎn)和關(guān)于原點(diǎn)對稱,則的值是___________.2、若點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,則______;3、如圖,正方形ABCD的邊長是5,E是邊BC上一點(diǎn)且BE=2,F(xiàn)為邊AB上的一個動點(diǎn),連接EF,以EF為邊向右作等邊三角形EFG,連接CG,則CG長的最小值為______.4、如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點(diǎn)按順時(shí)針方向依次旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置…,則正方形鐵片連續(xù)旋轉(zhuǎn)2017次后,點(diǎn)P的坐標(biāo)為____________________.5、問題背景:如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到,與交于點(diǎn),可推出結(jié)論:問題解決:如圖,在中,,,.點(diǎn)是內(nèi)一點(diǎn),則點(diǎn)到三個頂點(diǎn)的距離和的最小值是___________6、如圖,把△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADE,連接BE,CD,M是BE的中點(diǎn),若AM=,則CD的長為_______.7、如圖,在平面直角坐標(biāo)系中,點(diǎn)C的坐標(biāo)為(﹣1,0),點(diǎn)A的坐標(biāo)為(﹣3,3),將點(diǎn)A繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為___.8、如圖,正比例函數(shù)y=kx(k≠0)的圖像經(jīng)過點(diǎn)A(2,4),AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADC,則直線AC的函數(shù)表達(dá)式為_____.9、如圖,已知點(diǎn)的坐標(biāo)是,,點(diǎn)的坐標(biāo)是,,菱形的對角線交于坐標(biāo)原點(diǎn),則點(diǎn)的坐標(biāo)是______.10、點(diǎn)A(1,-5)關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn)B,則點(diǎn)B的坐標(biāo)為______.三、解答題(6小題,每小題5分,共計(jì)30分)1、如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)(2,0),點(diǎn)C是y軸上的動點(diǎn),當(dāng)點(diǎn)C在y軸上移動時(shí),始終保持是等邊三角形(點(diǎn)A、C、P按逆時(shí)針方向排列);當(dāng)點(diǎn)C移動到O點(diǎn)時(shí),得到等邊三角形AOB(此時(shí)點(diǎn)P與點(diǎn)B重合).〖初步探究〗(1)點(diǎn)B的坐標(biāo)為;(2)點(diǎn)C在y軸上移動過程中,當(dāng)?shù)冗吶切蜛CP的頂點(diǎn)P在第二象限時(shí),連接BP,求證:;〖深入探究〗(3)當(dāng)點(diǎn)C在y軸上移動時(shí),點(diǎn)P也隨之運(yùn)動,探究點(diǎn)P在怎樣的圖形上運(yùn)動,請直接寫出結(jié)論,并求出這個圖形所對應(yīng)的函數(shù)表達(dá)式;〖拓展應(yīng)用〗(4)點(diǎn)C在y軸上移動過程中,當(dāng)OP=OB時(shí),點(diǎn)C的坐標(biāo)為.2、如圖,在正方形ABCD中,點(diǎn)P在直線BC上,作射線AP,將射線AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,得到射線AQ,交直線CD于點(diǎn)Q,過點(diǎn)B作BE⊥AP于點(diǎn)E,交AQ于點(diǎn)F,連接DF.(1)依題意補(bǔ)全圖形;(2)用等式表示線段BE,EF,DF之間的數(shù)量關(guān)系,并證明.3、已知:如圖,三角形ABM與三角形ACM關(guān)于直線AF成軸對稱,三角形ABE與三角形DCE關(guān)于點(diǎn)E成中心對稱,點(diǎn)E、D、M都在線段AF上,BM的延長線交CF于點(diǎn)P.(1)求證:AC=CD;(2)若∠BAC=2∠MPC,請你判斷∠F與∠MCD的數(shù)量關(guān)系,并說明理由.4、如圖,點(diǎn)P是正方形ABCD內(nèi)部的一點(diǎn),∠APB=90°,將Rt△APB繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到△ADQ,QD、BP的延長線相交于點(diǎn)E.(1)判斷四邊形APEQ的形狀,并說明理由;(2)若正方形ABCD的邊長為10,DE=2,求BE的長.5、如圖,已知線段OA在平面直角坐標(biāo)系中,O是原點(diǎn).(1)將OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°得到,過點(diǎn)作軸,垂足為B.請?jiān)趫D中用不含刻度的直尺和圓規(guī)分別作出、;(2)若,則的面積是______.6、如圖,在平面直角坐標(biāo)系中,拋物線M的表達(dá)式為y=﹣x2+2x,與x軸交于O、A兩點(diǎn),頂點(diǎn)為點(diǎn)B.(1)求證:△OAB為等腰直角三角形:(2)已知點(diǎn)P在y軸上,且OP=1,點(diǎn)C在第一象限,△ABC為等腰直角三角形,將拋物線M進(jìn)行平移,使其對稱軸經(jīng)過點(diǎn)C,請問平移后的拋物線能否經(jīng)過點(diǎn)P?如果能,求出平移方式;如果不能,說明理由.-參考答案-一、單選題1、D【解析】【分析】根據(jù)中心對稱圖形的性質(zhì)得出圖形旋轉(zhuǎn)180°,與原圖形能夠完全重合的圖形是中心對稱圖形,分別判斷得出即可.【詳解】解:A.不是中心對稱圖形,不符合題意;B.不是中心對稱圖形,不符合題意;C.不是中心對稱圖形,不符合題意;D.是中心對稱圖形,符合題意;故選:D.【考點(diǎn)】此題主要考查了中心對稱圖形的性質(zhì),根據(jù)中心對稱圖形的定義判斷圖形是解決問題的關(guān)鍵.2、A【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)說明△ACC′是等腰直角三角形,且∠CAC′=90°,理由勾股定理求出CC′值,最后利用B′C=CC′-C′B′即可.【詳解】解:根據(jù)旋轉(zhuǎn)的性質(zhì)可知AC=AC′,∠ACB=∠AC′B′=45°,BC=B′C′=1,∴△ACC′是等腰直角三角形,且∠CAC′=90°,∴CC′==4,∴B′C=4-1=3.故選:A.【考點(diǎn)】本題主要考查了旋轉(zhuǎn)的性質(zhì)、勾股定理,在解決旋轉(zhuǎn)問題時(shí),要借助旋轉(zhuǎn)的性質(zhì)找到旋轉(zhuǎn)角和旋轉(zhuǎn)后對應(yīng)的量.3、D【解析】【分析】由旋轉(zhuǎn)可知,即可求出,由于,則可判斷,即A選項(xiàng)錯誤;由旋轉(zhuǎn)可知,由于,即推出,即B選項(xiàng)錯誤;由三角形三邊關(guān)系可知,即可推出,即C選項(xiàng)錯誤;由旋轉(zhuǎn)可知,再由,即可證明為等邊三角形,即推出.即可求出,即證明,即D選項(xiàng)正確;【詳解】由旋轉(zhuǎn)可知,∵點(diǎn)A,D,E在同一條直線上,∴,∵,∴,故A選項(xiàng)錯誤,不符合題意;由旋轉(zhuǎn)可知,∵為鈍角,∴,∴,故B選項(xiàng)錯誤,不符合題意;∵,∴,故C選項(xiàng)錯誤,不符合題意;由旋轉(zhuǎn)可知,∵,∴為等邊三角形,∴.∴,∴,故D選項(xiàng)正確,符合題意;故選D.【考點(diǎn)】本題考查旋轉(zhuǎn)的性質(zhì),三角形三邊關(guān)系,等邊三角形的判定和性質(zhì)以及平行線的判定.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.4、C【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得∠BAD=55°,∠E=∠ACB=70°,由直角三角形的性質(zhì)可得∠DAC=20°,即可求解.【詳解】解:∵將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)55°得△ADE,∴∠BAD=55°,∠E=∠ACB=70°,∵AD⊥BC,∴∠DAC=20°,∴∠BAC=∠BAD+∠DAC=75°.故選C.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),掌握旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.5、A【解析】【分析】根據(jù)網(wǎng)格結(jié)構(gòu)作出旋轉(zhuǎn)后的圖形,然后根據(jù)平面直角坐標(biāo)系寫出點(diǎn)B′的坐標(biāo)即可.【詳解】△A′B′O如圖所示,點(diǎn)B′(2,1).故選A.【考點(diǎn)】本題考查了坐標(biāo)與圖形變化,熟練掌握網(wǎng)格結(jié)構(gòu),作出圖形是解題的關(guān)鍵.6、D【解析】【分析】根據(jù)中心對稱的性質(zhì)即可判斷.【詳解】解:對應(yīng)點(diǎn)的連線被對稱中心平分,A,B正確;成中心對稱圖形的兩個圖形是全等形,那么對應(yīng)線段相等,C正確;和不是對應(yīng)角,D錯誤.故選:D.【考點(diǎn)】本題考查成中心對稱兩個圖形的性質(zhì):對應(yīng)點(diǎn)的連線被對稱中心平分;成中心對稱圖形的兩個圖形是全等形.7、C【解析】【分析】根據(jù)圖形的對稱性,用360°除以3計(jì)算即可得解.【詳解】解:∵360°÷3=120°,∴旋轉(zhuǎn)的角度是120°的整數(shù)倍,∴旋轉(zhuǎn)的角度至少是120°.故選C.【考點(diǎn)】本題考查了旋轉(zhuǎn)對稱圖形,仔細(xì)觀察圖形求出旋轉(zhuǎn)角是120°的整數(shù)倍是解題的關(guān)鍵.8、C【解析】【分析】根據(jù)坐標(biāo)系中對稱點(diǎn)與原點(diǎn)的關(guān)系判斷即可.【詳解】關(guān)于原點(diǎn)對稱的一組坐標(biāo)橫縱坐標(biāo)互為相反數(shù),所以(3,2)關(guān)于原點(diǎn)對稱的點(diǎn)是(-3,-2),故選C.【考點(diǎn)】本題考查原點(diǎn)對稱的性質(zhì),關(guān)鍵在于牢記基礎(chǔ)知識.9、D【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念,對各選項(xiàng)分析判斷即可得解.把一個圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:A.是軸對稱圖形,不是中心對稱圖形,故本選項(xiàng)不符合題意;B.既是軸對稱圖形,又是中心對稱圖形,故本選項(xiàng)不符合題意;C.既不是軸對稱圖形,也不是中心對稱圖形,故本選項(xiàng)不符合題意;D.不是軸對稱圖形,是中心對稱圖形,故本選項(xiàng)符合題意.故選:D.【考點(diǎn)】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.10、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)及旋轉(zhuǎn)的性質(zhì)可知,然后可得,則有,進(jìn)而問題可求解.【詳解】解:∵四邊形是平行四邊形,,∴,由旋轉(zhuǎn)的性質(zhì)可得,∴,∴;故選B.【考點(diǎn)】本題主要考查平行四邊形的性質(zhì)與旋轉(zhuǎn)的性質(zhì),熟練掌握平行四邊形的性質(zhì)與旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.二、填空題1、-3.【解析】【分析】先求出的值,然后相加即可.【詳解】解:點(diǎn)和關(guān)于原點(diǎn)對稱,則a=-1,b=-2,,故答案為:-3.【考點(diǎn)】本題考查了關(guān)于原點(diǎn)對稱點(diǎn)的坐標(biāo)變化規(guī)律,解題關(guān)鍵是熟知變化規(guī)律,準(zhǔn)確進(jìn)行計(jì)算.2、-1【解析】【分析】平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于原點(diǎn)的對稱點(diǎn)是(-x,-y),可據(jù)此求出m、n的值.【詳解】∵點(diǎn)與點(diǎn)關(guān)于坐標(biāo)系原點(diǎn)對稱,∴m-2n=-4,3m=-6解得:m=-2,n=1.故m+n=-2+1=-1.故答案為-1.【考點(diǎn)】本題考查了關(guān)于原點(diǎn)對稱的點(diǎn)坐標(biāo)的關(guān)系,是需要識記的基本問題.3、【解析】【分析】由題意分析可知,點(diǎn)F為主動點(diǎn),運(yùn)動軌跡是線段AB,G為從動點(diǎn),所以以點(diǎn)E為旋轉(zhuǎn)中心構(gòu)造全等關(guān)系,得到點(diǎn)G的運(yùn)動軌跡,也是一條線段,之后通過垂線段最短構(gòu)造直角三角形獲得CG最小值.【詳解】解:由題意可知,點(diǎn)F是主動點(diǎn),點(diǎn)G是從動點(diǎn),點(diǎn)F在線段AB上運(yùn)動,點(diǎn)G的軌跡也是一條線段,將△EFB繞點(diǎn)E旋轉(zhuǎn)60°,使EF與EG重合,得到△EFB≌△EGH,從而可知△EBH為等邊三角形,∵四邊形ABCD是正方形,∴∠FBE=90°,∴∠GHE=∠FBE=90°,∴點(diǎn)G在垂直于HE的直線HN上,延長HG交DC于點(diǎn)N,過點(diǎn)C作CM⊥HN于M,則CM即為CG的最小值,過點(diǎn)E作EP⊥CM于P,可知四邊形HEPM為矩形,∠PEC=30°,∠EPC=90°,則CM=MP+CP=HE+EC=2+=,故答案為:.【考點(diǎn)】本題考查了線段最值問題,分清主動點(diǎn)和從動點(diǎn),通過旋轉(zhuǎn)構(gòu)造全等,從而判斷出點(diǎn)G的運(yùn)動軌跡,是本題的關(guān)鍵,之后運(yùn)用垂線段最短,構(gòu)造圖形計(jì)算,是最值問題中比較典型的類型.4、(6053,2).【解析】【分析】根據(jù)前四次的坐標(biāo)變化總結(jié)規(guī)律,從而得解.【詳解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…發(fā)現(xiàn)點(diǎn)P的位置4次一個循環(huán),∵2017÷4=504余1,P2017的縱坐標(biāo)與P1相同為2,橫坐標(biāo)為5+3×2016=6053,∴P2017(6053,2),故答案為(6053,2).考點(diǎn):坐標(biāo)與圖形變化﹣旋轉(zhuǎn);規(guī)律型:點(diǎn)的坐標(biāo).5、【解析】【分析】如圖,將△MOG繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)60°,得到△MPQ,易知△MOP為等邊三角形,繼而得到點(diǎn)O到三頂點(diǎn)的距離為:ON+OM+OG=ON+OP+PQ,由此可以發(fā)現(xiàn)當(dāng)點(diǎn)N、O、P、Q在同一條直線上時(shí),有ON+OM+OG最小,此時(shí),∠NMQ=75°+60°=135°,過Q作QA⊥NM交NM的延長線于A,利用勾股定理進(jìn)行求解即可得.【詳解】如圖,將△MOG繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)60°,得到△MPQ,顯然△MOP為等邊三角形,∴,OM+OG=OP+PQ,∴點(diǎn)O到三頂點(diǎn)的距離為:ON+OM+OG=ON+OP+PQ,∴當(dāng)點(diǎn)N、O、P、Q在同一條直線上時(shí),有ON+OM+OG最小,此時(shí),∠NMQ=75°+60°=135°,過Q作QA⊥NM交NM的延長線于A,則∠MAQ=90°,∴∠AMQ=180°-∠NMQ=45°,∵M(jìn)Q=MG=4,∴AQ=AM=MQ?cos45°=4,∴NQ=,故答案為.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),最短路徑問題,勾股定理,解直角三角形等知識,綜合性較強(qiáng),有一定的難度,正確添加輔助線是解題的關(guān)鍵.6、【解析】【分析】延長AM到F,使AM=MF,連接BF,證△AEM≌△FBM,得AE=FB,∠AEM=∠FBM,△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADE,得AB=AD,∠CAE=∠BAD=90°,再證AC=BF,∠CAD=∠ABF,得△BFA≌△ACD,即可得答案.【詳解】解:如上圖:延長AM到F,使AM=MF,∵M(jìn)是BE的中點(diǎn),∴BM=EM,∵∠AME=∠FMB,∴△AEM≌△FBM,∴AE=FB,∠AEM=∠FBM,∵△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADE,∴AB=AD,AC=AE,∠CAE=∠BAD=90°,∴AC=BF,∠CAD=90°-∠EAD,∵∠ABF=∠ABM+∠FBM=∠ABM+∠AEM=180°-∠BAE=180°-(∠BAD+∠EAD)=180°-90°-∠EAD=90°-∠EAD,∴∠CAD=∠ABF,在△BFA和△ACD中,∴△BFA≌△ACD,∴FA=CD,∵AM=,∴CD=FA=2AM=2,故答案為:2.【考點(diǎn)】本題考查旋轉(zhuǎn)的性質(zhì),三角形全等的判定與性質(zhì),解題的關(guān)鍵是延長AM到F,使AM=MF,證△BFA≌△ACD.7、(2,2)【解析】【分析】過點(diǎn)A作AE⊥x軸于E,過點(diǎn)B作BF⊥x軸于F.利用全等三角形的性質(zhì)解決問題即可.【詳解】解:如圖,過點(diǎn)A作AE⊥x軸于E,過點(diǎn)B作BF⊥x軸于F.∵∠AEC=∠ACB=∠CFB=90°,∴∠ACE+∠BCF=90°,∠BCF+∠B=90°,∴∠ACE=∠B,在△AEC和△CFB中,,∴△AEC≌△CFB(AAS),∴AE=CF,EC=BF,∵A(﹣3,3),C(﹣1,0),∴AE=CF=3,OC=1,EC=BF=2,∴OF=CF﹣OC=2,∴B(2,2),故答案為:(2,2).【考點(diǎn)】本題考查坐標(biāo)與圖形變化﹣旋轉(zhuǎn),全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.8、y=-0.5x+5【解析】【分析】直接把點(diǎn)A(2,4)代入正比例函數(shù)y=kx,求出k的值即可;由A(2,4),AB⊥x軸于點(diǎn)B,可得出OB,AB的長,再由△ABO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADC,由旋轉(zhuǎn)不變性的性質(zhì)可知DC=OB,AD=AB,故可得出C點(diǎn)坐標(biāo),再把C點(diǎn)和A點(diǎn)坐標(biāo)代入y=ax+b,解出解析式即可.【詳解】解:∵正比例函數(shù)y=kx(k≠0)經(jīng)過點(diǎn)A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x軸于點(diǎn)B,∴OB=2,AB=4,∵△ABO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)設(shè)直線AC的解析式為y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式為:y=-0.5x+5【考點(diǎn)】本題考查的是一次函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn)及圖形旋轉(zhuǎn)的性質(zhì),熟知一次函數(shù)圖象上各點(diǎn)的坐標(biāo)一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.9、【解析】【分析】根據(jù)菱形具有的平行四邊形基本性質(zhì),對角線互相平分,且交點(diǎn)為坐標(biāo)原點(diǎn),則,關(guān)于原點(diǎn)對稱,因此在直角坐標(biāo)系中兩點(diǎn)的坐標(biāo)關(guān)于原點(diǎn)對稱,橫坐標(biāo)與橫坐標(biāo)互為相反數(shù),縱坐標(biāo)與縱坐標(biāo)互為相反數(shù)便可得.【詳解】∵四邊形是菱形,對角線相交于坐標(biāo)原點(diǎn)∴根據(jù)平行四邊形對角線互相平分的性質(zhì),和;和均關(guān)于原點(diǎn)對稱根據(jù)直角坐標(biāo)系上一點(diǎn)關(guān)于原點(diǎn)對稱的點(diǎn)為可得已知點(diǎn)的坐標(biāo)是,則點(diǎn)的坐標(biāo)是.故答案為:.【考點(diǎn)】本題旨在考查菱形的基本性質(zhì)及直角坐標(biāo)系中關(guān)于原點(diǎn)對稱點(diǎn)的坐標(biāo)的知識點(diǎn),熟練理解掌握該知識點(diǎn)為解題的關(guān)鍵.10、(-1,5)【解析】【分析】根據(jù)若兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱,橫縱坐標(biāo)均互為相反數(shù),即可求解.【詳解】解:∵點(diǎn)A(1,-5)關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn)B,∴點(diǎn)B的坐標(biāo)為(-1,5).故答案為:(-1,5)【考點(diǎn)】本題主要考查了平面直角坐標(biāo)系內(nèi)點(diǎn)關(guān)于原點(diǎn)對稱的特征,熟練掌握若兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱,橫縱坐標(biāo)均互為相反數(shù)是解題的關(guān)鍵.三、解答題1、(1);(2)證明見解析;(3)點(diǎn)P在過點(diǎn)B且與AB垂直的直線上,;(4).【解析】【分析】(1)作BD⊥x軸,與x軸交于D,利用等邊三角形的性質(zhì)和勾股定理即可解得;(2)根據(jù)等邊三角形的性質(zhì)可得兩組對應(yīng)邊相等,再結(jié)合角的和差可得∠BAP=∠OAC,再利用SAS可證得全等;(3)由(2)可知PB⊥AB,由此可得P的運(yùn)動軌跡,再求得AB的解析式,根據(jù)垂直的兩條直線的一次項(xiàng)系數(shù)互為負(fù)倒數(shù)設(shè)BP的解析式,將B點(diǎn)坐標(biāo)代入即可求得解析式;(4)利用兩點(diǎn)之間距離公式求得P點(diǎn)坐標(biāo),再利用勾股定理求得BP,結(jié)合(2)可知OC=BP,由此可得C點(diǎn)坐標(biāo).【詳解】解:(1)∵A(0,2),∴OA=2,過點(diǎn)B作BD⊥x軸,∵△OAB為等邊三角形,OA=2,∴OB=OA=2,OD=1,∴即,故答案為:;(2)證明:∵△OAB和ACP為等邊三角形,∴AC=AP,AB=OA,∠CAP=∠OAB=60°,∴∠BAP=∠OAC,∴(SAS);(3)如上圖,∵,∴∠ABP=∠AOC=90°,∴點(diǎn)P在過點(diǎn)B且與AB垂直的直線上.設(shè)直線AB的解析式為:,則,解得:,∴,∴設(shè)直線BP的解析式為:,則,解得,故;(4)設(shè),∵OP=OB,∴,解得:,(舍去),故此時(shí),,∵點(diǎn)A、C、P按逆時(shí)針方向排列,∴,故答案為:.【考點(diǎn)】本題考查求一次函數(shù)解析式,勾股定理,全等三角形的性質(zhì)和判定,等邊三角形的性質(zhì).解題的關(guān)鍵是正確尋找全等三角形解決問題.2、(1)補(bǔ)全圖形見解析;(2)BE+DF=EF,證明見解析.【解析】【分析】(1)根據(jù)題意補(bǔ)全圖形即可.(2)延長FE到H,使EH=EF,根據(jù)題意證明△ABH≌△ADF,然后根據(jù)全等三角形的性質(zhì)即可證明.【詳解】(1)補(bǔ)全圖形(2)BE+DF=EF.證明:延長FE到H,使EH=EF∵BE⊥AP,∴AH=AF,∴∠HAP=∠FAP=45°,∵四邊形ABCD為正方形,∴AB=AD,∠BAD=90°∴∠BAP+∠2=45°,∵∠1+∠BAP=45°∴∠1=∠2,∴△ABH≌△ADF,∴DF=BH,∵BE+BH=EH=EF,∴BE+DF=EF.【考點(diǎn)】此題考查了正方形的性質(zhì)和全等三角形的性質(zhì),解題的關(guān)鍵是根據(jù)題意作出輔助線.3、見解析【解析】【分析】(1)利用中心對稱圖形的性質(zhì)以及軸對稱圖形的性質(zhì)得出全等三角形進(jìn)而得出對應(yīng)線段相等;(2)利用(1)中所求,進(jìn)而得出對應(yīng)角相等,進(jìn)而得出答案.【詳解】(1)證明:∵△ABM與△ACM關(guān)于直線AF成軸對稱,∴△ABM≌△ACM,∴AB=AC,又∵△ABE與△DCE關(guān)于點(diǎn)E成中心對稱,∴△ABE≌△DCE,∴AB=CD,∴AC=CD;(2)∠F=∠MCD.理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,∵∠BAC=2∠MPC,∠BMA=∠PMF,∴設(shè)∠MPC=α,則∠BAE=∠CAE=∠CDE=α,設(shè)∠BMA=β,則∠PMF=∠CMA=β,∴∠F=∠CPM?∠PMF=α?β,∠MCD=∠CDE?∠DMC=α?β,∴∠F=∠MCD.【考點(diǎn)】本題主要考查軸對稱、中心對稱性質(zhì)和全等三角形的判定及性質(zhì).通過軸對稱與中心對稱的性質(zhì)得出全等三角形的判定條件是解題的關(guān)鍵.4、(1)正方形,見解析(2)14【解析】【分析】(1)利用旋轉(zhuǎn)即可得到,再根據(jù)全等三角形的性質(zhì)即可求證四邊形APEQ的形狀.(2)設(shè),則,,利用勾股定理可求出,進(jìn)而可求出BE的長.(1)解:四邊形APEQ是正方形,理由如下:Rt△APB繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到△ADQ,,,,在四邊形APEQ中,,,,四邊形APEQ為矩形,,矩形APEQ是正方形.(2)設(shè).則由(1)以及題意可知:,,,.在中,,即,解得(負(fù)值舍去),,.【考點(diǎn)】本題考查正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)以及勾股定理,熟練掌握正方形基本性質(zhì)以及旋轉(zhuǎn)性質(zhì)是解題的關(guān)鍵.5、(1)見詳解(2)【解析】【分析】(1)利用等邊三角形的性質(zhì)的性質(zhì)作OA′,利用垂直平分線的作法求B點(diǎn);(2)設(shè)A′(a,b),如圖過A作AC垂直x軸于C,過A′作A′⊥AC于D,連接AA′;在Rt△ADA′和Rt△OBA′中利用勾股定理建立方程組,解方程即可解答;(1)解:分別以O(shè)、A為圓心,以AO為半徑作弧,兩弧交于點(diǎn)A′,連接OA′即為所求線段;以A′為圓心,適當(dāng)長度為半徑作弧交x軸于點(diǎn)E、F,再分別以點(diǎn)E、F為圓心,以EA′、FA′為圓心作弧,兩弧交于點(diǎn)C,連接CA′交x軸于點(diǎn)B,A′B即為所求線段;(2)解:設(shè)A′(a,b),如圖過A作AC垂直x軸于C,過A′作A′D⊥AC于D,連接AA′,則四邊形DCBA′是矩形;由(1)作圖可得,OA=OA′=AA′==∵A(-2,6),A′(a,b),∴Rt△ADA′中,AD=6-b,DA′=a+2,AA′2=(6-b)2+(a+2)2=40,①Rt△OBA′中,OB=a,BA′=b,OA′2=a2+b2=40,②∴(6-b)2+(a+2)2=a2+b2,解得:a=3b-10,代入②,(3b-10)2+b2=40,b2-6b+6=0解得:b=,b=時(shí),a=,符合題意;b=時(shí),a=,不符合題意;∴A′(,),的面積=×()×()=;【考點(diǎn)】本題考查了旋轉(zhuǎn)作圖,等邊三角形的判定和性質(zhì),垂直平分線的作法,勾股定理,矩形的判定和性質(zhì),一元二次方程的解法;利用勾股定理構(gòu)建方程是解題關(guān)鍵.6、(1)見詳解(2)將拋物線M向右平移個單位,再向上平移個點(diǎn),得過點(diǎn)C1和點(diǎn)P的拋物線;拋物線M向右平移個單位,再向上平移得出過點(diǎn)C2和點(diǎn)P的拋物線;拋物線M向右平移個單位。再向上平移個單位,得點(diǎn)過點(diǎn)C3與P的拋物線【解析】【分析】(1)將拋物線M配方為頂點(diǎn)式得出拋物線的對稱軸為x=2,拋物線的頂點(diǎn)B(2,2),然后求出點(diǎn)A(4,0),根據(jù)對稱軸求出點(diǎn)E(2,O),BE⊥OA,證明△OEB為等腰直角三角形,再證△AEB為等腰直角三角形即可;(2)根據(jù)△ABC為等腰直角三角形,分以下三種情況,以AB為直角邊,點(diǎn)B為直角頂點(diǎn),將AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得出點(diǎn)C1(4,4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論