




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,該幾何體的左視圖是()A. B. C. D.2、在平面直角坐標系中,已知點與點關于原點對稱,則的值為()A.4 B.-4 C.-2 D.23、如圖,在中,,,將繞點A順時針旋轉60°得到,此時點B的對應點D恰好落在BC邊上,則CD的長為()A.1 B.2 C.3 D.44、下列判斷正確的個數有()①直徑是圓中最大的弦;②長度相等的兩條弧一定是等??;③半徑相等的兩個圓是等圓;④弧分優(yōu)弧和劣弧;⑤同一條弦所對的兩條弧一定是等?。瓵.1個 B.2個 C.3個 D.4個5、往直徑為78cm的圓柱形容器內裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm6、下列事件為必然事件的是()A.明天要下雨B.a是實數,|a|≥0C.﹣3<﹣4D.打開電視機,正在播放新聞7、如圖圖案中,不是中心對稱圖形的是()A. B. C. D.8、如圖,為正六邊形邊上一動點,點從點出發(fā),沿六邊形的邊以1cm/s的速度按逆時針方向運動,運動到點停止.設點的運動時間為,以點、、為頂點的三角形的面積是,則下列圖像能大致反映與的函數關系的是()A. B.C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在中,,分別以、、邊為直徑作半圓,圖中陰影部分在數學史上稱為“希波克拉底月牙”.當,時,則陰影部分的面積為__________.2、邊長為2的正三角形的外接圓的半徑等于___.3、點P為邊長為2的正方形ABCD內一點,是等邊三角形,點M為BC中點,N是線段BP上一動點,將線段MN繞點M順時針旋轉60°得到線段MQ,連接AQ、PQ,則的最小值為______.4、如圖,四邊形ABCD是⊙O的內接四邊形,⊙O的半徑為2,∠D=110°,則的長為__.5、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點O,∠BOC=60°,分別在、線段AB和AC上選取點P、E、F,則PE+EF+FP的最小值為____________.6、在平面直角坐標系中,點,圓C與x軸相切于點A,過A作一條直線與圓交于A,B兩點,AB中點為M,則OM的最大值為______.7、某射擊運動員在同一條件下的射擊成績記錄如下:射擊次數20401002004001000“射中9環(huán)以上”的次數153378158321801“射中9環(huán)以下”的頻率通過計算頻率,估計這名運動員射擊一次時“射中9環(huán)以上”的概率是______(結果保留小數點后一位).三、解答題(7小題,每小題0分,共計0分)1、如圖,在⊙O中,弦AC與弦BD交于點P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.2、如圖,點A是外一點,過點A作出的一條切線.(使用尺規(guī)作圖,作出一條即可,不要求寫出作法,不要求證明,但要保留作圖痕跡)3、如圖所示,是⊙的一條弦,,垂足為,交⊙于點,點在⊙上.()若,求的度數.()若,,求的長.4、如圖,的直徑cm,AM和BN是它的切線,DE與相切于點E,并與AM,BN分別相交于D,C兩點.設,,求y關于x的函數解析式.5、在平面直角坐標系中,⊙O的半徑為1,對于直線l和線段AB,給出如下定義:若將線段AB關于直線l對稱,可以得到⊙O的弦A′B′(A′,B′分別為A,B的對應點),則稱線段AB是⊙O的關于直線l對稱的“關聯線段”.例如:在圖1中,線段是⊙O的關于直線l對稱的“關聯線段”.(1)如圖2,的橫、縱坐標都是整數.①在線段中,⊙O的關于直線y=x+2對稱的“關聯線段”是_______;②若線段中,存在⊙O的關于直線y=-x+m對稱的“關聯線段”,則=;(2)已知直線交x軸于點C,在△ABC中,AC=3,AB=1,若線段AB是⊙O的關于直線對稱的“關聯線段”,直接寫出b的最大值和最小值,以及相應的BC長.6、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.7、如圖,在中,,以AC為直徑的半圓交斜邊AB于點D,E為BC的中點,連結DE,CD.過點D作于點F.(1)求證:DE是的切線;(2)若,,求的半徑.-參考答案-一、單選題1、C【分析】根據從左邊看得到的圖形是左視圖解答即可.【詳解】解:從左邊看是一個正方形被水平的分成3部分,中間的兩條分線是虛線,故C正確.故選C.【點睛】本題主要考查了簡單組合體的三視圖,掌握三視圖的定義成為解答本題的關鍵.2、C【分析】根據關于原點對稱的點的坐標特點:兩個點關于原點對稱時,它們的坐標符號相反即可得到答案.【詳解】解:點與點關于原點對稱,,,.故選:C.【點睛】此題主要考查了原點對稱點的坐標特點,解題的關鍵是掌握點的變化規(guī)律.3、B【分析】由題意以及旋轉的性質可得為等邊三角形,則BD=2,故CD=BC-BD=2.【詳解】由題意以及旋轉的性質知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故為等邊三角形,即AB=AD=BD=2則CD=BC-BD=4-2=2故選:B.【點睛】本題考查了等邊三角形的判定及性質,等邊三角形的三邊都相等,三個內角都相等,并且每一個內角都等于,等邊三角形判定的方法有:三邊相等的三角形是等邊三角形(定義);三個內角都相等的三角形是等邊三角形;有一個內角是60度的等腰三角形是等邊三角形;兩個內角為60度的三角形是等邊三角形.4、B【詳解】①直徑是圓中最大的弦;故①正確,②同圓或等圓中長度相等的兩條弧一定是等?。还盛诓徽_③半徑相等的兩個圓是等圓;故③正確④弧分優(yōu)弧、劣弧和半圓,故④不正確⑤同一條弦所對的兩條弧可位于弦的兩側,故不一定相等,則⑤不正確.綜上所述,正確的有①③故選B【點睛】本題考查了圓相關概念,掌握弦與弧的關系以及相關概念是解題的關鍵.5、C【分析】連接,過點作于點,交于點,先由垂徑定理求出的長,再根據勾股定理求出的長,進而得出的長即可.【詳解】解:連接,過點作于點,交于點,如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點睛】本題考查了垂徑定理、勾股定理等知識,解題的關鍵是根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.6、B【分析】根據事情發(fā)生的可能性大小進行判斷,必然事件和不可能事件統稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】A.明天要下雨,是隨機事件,不符合題意;B.a是實數,|a|≥0,是必然事件,符合題意;C.﹣3<﹣4,是不可能事件,不符合題意D.打開電視機,正在播放新聞,是隨機事件,不符合題意故選B【點睛】本題考查了必然事件,隨機事件,不可能事件,實數的性質,有理數大小比較,掌握相關知識是解題的關鍵.7、C【分析】根據中心對稱圖形的概念:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心求解.【詳解】解:A、是中心對稱圖形,故A選項不合題意;B、是中心對稱圖形,故B選項不合題意;C、不是中心對稱圖形,故C選項符合題意;D、是中心對稱圖形,故D選項不合題意;故選:C.【點睛】本題考查了中心對稱圖形的知識,解題的關鍵是掌握中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉180°后重合.8、A【分析】設正六邊形的邊長為1,當在上時,過作于而求解此時的函數解析式,當在上時,延長交于點過作于并求解此時的函數解析式,當在上時,連接并求解此時的函數解析式,由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,從而可得答案.【詳解】解:設正六邊形的邊長為1,當在上時,過作于而當在上時,延長交于點過作于同理:則為等邊三角形,當在上時,連接由正六邊形的性質可得:由正六邊形的對稱性可得:而由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,所以符合題意的是A,故選A【點睛】本題考查的是動點問題的函數圖象,銳角三角函數的應用,正多邊形的性質,清晰的分類討論是解本題的關鍵.二、填空題1、【分析】根據陰影部分面積等于以為直徑的2個半圓的面積加上減去為半徑的半圓面積即.【詳解】解:在中,,,.故答案為:【點睛】本題考查了勾股定理,求扇形面積,直徑所對的圓周角是直角,掌握圓周角定理是解題的關鍵.2、【分析】過圓心作一邊的垂線,根據勾股定理可以計算出外接圓半徑.【詳解】如圖所示,是正三角形,故O是的中心,,∵正三角形的邊長為2,OE⊥AB∴,,∴,由勾股定理得:,∴,∴,∴(負值舍去).故答案為:.【點睛】本題考查了正多邊形和圓,解題的關鍵是根據題意畫出圖形,利用數形結合求解.3、【分析】如圖,取的中點,連接,,,證明,進而證明在上運動,且垂直平分,根據,求得最值,根據正方形的性質和勾股定理求得的長即可求得的最小值.【詳解】解:如圖,取的中點,連接,,,將線段MN繞點M順時針旋轉60°得到線段MQ,,是等邊三角形,,是的中點,是的中點是等邊三角形,即在和中,又是的中點點在上是的中點,是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點睛】本題考查了正方形的性質等邊三角形的性質,旋轉的性質,全等三角形的性質與判定,勾股定理,垂直平分線的性質與判定,根據以上知識轉化線段是解題的關鍵.4、##【分析】連接OA、OC,先求出∠ABC的度數,然后得到∠AOC,再由弧長公式即可求出答案.【詳解】解:連接OA、OC,如圖,∵四邊形ABCD是⊙O的內接四邊形,∠D=110°,∴,∴,∴;故答案為:.【點睛】本題考查了弧長的計算以及圓周角定理,解答本題的關鍵是掌握弧長公式.5、12【分析】如圖,連接BC,AO,作點P關于AB的對稱點M,作點P關于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點P關于AB的對稱點M,作點P關于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當MN的值最小時,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當PA的值最小時,MN的值最小,取AB的中點J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當點P在直線OA上時,PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識,解題的關鍵是學會利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.6、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點,先求出A點坐標,從而可證OM是△ABD的中位線,得到,則當BD最小時,OM也最小,即當B運動到時,BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點∵點C的坐標為(2,2),圓C與x軸相切于點A,∴點A的坐標為(2,0),∴OA=OD=2,即O是AD的中點,又∵M是AB的中點,∴OM是△ABD的中位線,∴,∴當BD最小時,OM也最小,∴當B運動到時,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點睛】本題主要考查了坐標與圖形,一點到圓上一點的距離得到最小值,兩點距離公式,三角形中位線定理,把求出OM的最小值轉換成求BD的最小值是解題的關鍵.7、0.8【分析】重復試驗次數越多,其頻率越能估計概率,求出射擊1000次時的頻率即可.【詳解】解:由題意可知射擊1000次時,運動員射擊一次時“射中9環(huán)以上”的頻率為∴用頻率估計概率為0.801,保留小數點后一位可知概率值為0.8故答案為:0.8.【點睛】本題考查了概率.解題的關鍵在于明確頻率估計概率時要在重復試驗次數盡可能多的情況下.三、解答題1、(1)證明見解析;(2).【分析】(1)連接,先證出,再根據圓周角定理可得,然后根據等腰三角形的判定即可得證;(2)連接,并延長交于點,連接,過作于點,先根據線段垂直平分線的判定與性質可得,再根據線段的和差、勾股定理可得,然后根據直角三角形全等的判定定理證出,根據全等三角形的性質可得,最后在中,利用勾股定理可得的長,從而可得的長,在中,利用勾股定理即可得.【詳解】證明:(1)如圖,連接,,,,即,,;(2)連接,并延長交于點,連接,過作于點,,,是的垂直平分線,,,,,在和中,,,,設,則,在中,,即,解得,在中,,即的半徑為.【點睛】本題考查了圓周角定理、直角三角形全等的判定定理與性質、勾股定理、垂徑定理等知識點,較難的是題(2),通過作輔助線,構造全等三角形和直角三角形是解題關鍵.2、見解析【分析】先作線段的垂直平分線.確定的中點,再以中點為圓心,一半為半徑作圓交于點,然后作直線,則根據圓周角定理可得為所求.【詳解】如圖,直線AB就是所求作的,(作法不唯一,作出一條即可,需要有作圖痕跡)【點睛】本題考查了作圖復雜作圖,解題的關鍵是掌握復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.3、(1)26°;(2)8【分析】(1)欲求,又已知一圓心角,可利用圓周角與圓心角的關系求解;(2)利用垂徑定理可以得到,從而得到結論.【詳解】解:(1),,.(2)∵,,且,∴,∵,,.【點睛】此題考查了圓周角定理,同圓中等弧所對的圓周角相等,以及垂徑定理,熟練掌握垂徑定理得出是解題關鍵.4、【分析】連接OC,OD,OE,根據切線的性質得到cm,,,推出,,根據,列得,從而求出函數解析式.【詳解】解:連接OC,OD,OE,∵AD切于點A,CB切于點B,CD切于點E,直徑cm∴cm,,,∴,,∵,∴∴..【點睛】此題考查了圓的切線的性質定理,全等三角形的判定及性質定理,求函數解析式,正確連線利用切線的性質是解題的關鍵.5、(1)①A1B1;②2或3;(2)b的最大值為,此時BC=;b的最小值為,此時BC=【分析】(1)①根據題意作出圖象即可解答;②根據“關聯線段”的定義,可確定線段A2B2存在“關聯線段”,再分情況解答即可;(2)設與AB對應的“關聯線段”是A’B’,由題意可知:當點A’(1,0)時,b最大,當點A’(-1,0)時,b最小;然后分別畫出圖形求解即可;【詳解】解:(1)①作出各點關于直線y=x+2的對稱點,如圖所示,只有A1B1符合題意;故答案為:A1B1;②由于直線A1B1與直線y=-x+m垂直,故A1B1不是⊙O的關于直線y=-x+m對稱的“關聯線段”;由于線段A3B3=,而圓O的最大弦長直徑=2,故A3B3也不是⊙O的關于直線y=-x+m對稱的“關聯線段”;直線A2B2的解析式是y=-x+5,且,故A2B2是⊙O的關于直線y=x+2對稱的“關聯線段”;當A2B2是⊙O的關于直線y=-x+m對稱的“關聯線段”,且對應兩個端點分別是(0,1)與(1,0)時,m=3,當A2B2是⊙O的關于直線y=-x+m對稱的“關聯線段”,且對應兩個端點分別是(0,-1)與(-1,0)時,m=2,故答案為:2或3.(2)設與AB對應的“關聯線段”是A’B’,由題意可知:當點A’(1,0)時,b最大,當點A’(-1,0)時,b最小;當點A’(1,0)時,如圖,連接OB’,CB’,作B’M⊥x軸于點M,∴CA’=CA=3,∴點C坐標為(4,0),代入直線,得b=;∵A’B’=OA’=OB’=1,∴△OA’B’是等邊三角形,∴OM=,,在直角三角形CB’M中,CB'=,即;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025貴州省人民醫(yī)院第十三屆貴州人博會引進人才10人模擬試卷及完整答案詳解一套
- 2025年福建省泉州市晉江市反邪教協會招聘1人模擬試卷及答案詳解(名師系列)
- 2025年濰坊諸城市恒益燃氣有限公司公開招聘工作人員模擬試卷附答案詳解(完整版)
- 2025江西贛州市會昌縣正源建設有限責任公司招聘勞務派遣人員1人考前自測高頻考點模擬試題及答案詳解(歷年真題)
- 2025廣東廣州航海學院廣州交通大學(籌)招聘高層次人才(學科領軍人才)15人考前自測高頻考點模擬試題(含答案詳解)
- 2025年保險銷售與理賠案例試卷及答案
- Unit 6 Exploring the Topic-Grammar in Use說課稿 仁愛科普版(2024)七年級英語上冊
- 2025春季廣東能源集團校園招聘考前自測高頻考點模擬試題及答案詳解(奪冠)
- 2025年西疇縣西灑中心衛(wèi)生院醫(yī)保政策DIP培訓考試試題及答案
- 2025年臨床心理學相關知識考試題及答案
- 氫氣實驗室制法課件
- 綠化噴灌工程施工方案
- 2025年宜昌專業(yè)技術人員公需科目培訓考試題及答案
- 2025年成人高考高升專試題(含答案)
- 船舶高級消防課件
- 臨床康復一體化講課件
- 重癥肺炎集束化治療專題報告
- 二年級語文上冊第二單元大單元教學設計
- 2025年云南南方地勘工程有限公司招聘筆試參考題庫含答案解析
- DB31/T 978-2016同步注漿用干混砂漿應用技術規(guī)范
- 教育新聞宣傳工作培訓
評論
0/150
提交評論