




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省東臺市中考數(shù)學(xué)真題分類(勾股定理)匯編專項練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,長方體的底面邊長分別為2cm和3cm,高為6cm.如果用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈達到點B,那么所用細線最短需要(
)A.11cm B.2cm C.(8+2)cm D.(7+3)cm2、在△ABC中,,那么△ABC是(
)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形3、如圖,正方體盒子的棱長為2,M為BC的中點,則一只螞蟻從A點沿盒子的表面爬行到M點的最短距離為(
)A. B.C. D.4、如圖所示的網(wǎng)格是正方形網(wǎng)格,A,B,C,D是網(wǎng)格線交點,則與的大小關(guān)系為(
)A. B. C. D.無法確定5、有一個邊長為1的正方形,以它的一條邊為斜邊,向外作一個直角三角形,再分別以直角三角形的兩條直角邊為邊,向外各作一個正方形,稱為第一次“生長”(如圖1);再分別以這兩個正方形的邊為斜邊,向外各自作一個直角三角形,然后分別以這兩個直角三角形的直角邊為邊,向外各作一個正方形,稱為第二次“生長”(如圖2)……如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2021次后形成的圖形中所有的正方形的面積和是(
)A.1 B.2020 C.2021 D.20226、如圖,桌上有一個圓柱形玻璃杯(無蓋)高6厘米,底面周長16厘米,在杯口內(nèi)壁離杯口1.5厘米的A處有一滴蜜糖,在玻璃杯的外壁,A的相對方向有一小蟲P,小蟲離杯底的垂直距離為1.5厘米,小蟲爬到蜜糖處的最短距離是(
)A.厘米 B.10厘米 C.厘米 D.8厘米7、如圖,正方形ABCD中,AB=12,將△ADE沿AE對折至△AEF,延長EF交BC于點G,G剛好是BC邊的中點,則ED的長是()A.2 B.3 C.4 D.5第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,圓柱形無蓋玻璃容器,高18cm,底面周長為60cm,在外側(cè)距下底1cm的點C處有一蜘蛛,與蜘蛛相對的圓柱形容器的上口外側(cè)距開口1cm的F處有一蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路線的長度為__________cm(容器壁厚度忽略不計).2、如圖,分別以此直角三角形的三邊為直徑在三角形的外部畫半圓,,,則_________.3、《九章算術(shù)》中有“折竹抵地”問題:“今有竹高一丈,末折抵地,去根三尺,問折者高幾何?”題意是:有一根竹子原來高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為______.4、在一棵樹的5米高B處有兩個猴子為搶吃池塘邊水果,一只猴子爬下樹跑到A處(離樹10米)的池塘邊.另一只爬到樹頂D后直接躍到A處,距離以直線計算,如果兩只猴子所經(jīng)過的距離相等,則這棵樹高_______米.5、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周長為15+9,則CD的長為_____.6、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.7、在△ABC中,∠C=90°,AB=10,AC=8,則BC的長為_____.8、如圖,在矩形中,,垂足為點.若,,則的長為______.三、解答題(7小題,每小題10分,共計70分)1、在邊長為8的等邊ABC中,點D是邊AB上的一動點,點E在邊AC上,且CE=2AD,射線DE繞點D順時針旋轉(zhuǎn)60°交BC邊于F.(1)如圖1,求證:∠AED=∠BDF;(2)如圖2,在射線DF上取DP=DE,連接BP,①求∠DBP的度數(shù);②取邊BC的中點M,當(dāng)PM取最小值時,求AD的長.2、如圖,在四邊形中,,,于,(1)求證:;(2)若,,求四邊形的面積.3、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點,且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說明理由;(2)求△ABC的周長.4、閱讀與思考:請閱讀下列材料,并完成相應(yīng)的任務(wù).若直角三角形的三邊的長都是正整數(shù),則三邊的長為“勾股數(shù)”.構(gòu)造勾股數(shù),就是要尋找3個正整數(shù),使它們滿足“其中兩個數(shù)的平方和(或平方差)等于第三個數(shù)的平方”.通過觀察常見勾股數(shù)“3,4,5”;“5,12,13”;“7,24,25”……猜想當(dāng)一組勾股數(shù)中(),最小數(shù)為奇數(shù)時,另兩個正整數(shù)和滿足比且,解得,.任務(wù):(1)請證明猜想成立,即證明,,構(gòu)成勾股數(shù).(2)若一組勾股數(shù)中,最小數(shù)為9,則另兩個數(shù)分別是________和________.5、如圖,將RtABC紙片沿AD折疊,使直角頂點C與AB邊上的點E重合,若AB=10cm,AC=6cm,求線段BD的長.6、如圖,中,,,是邊上一點,且,若.求的長.7、勾股定理的證明方法是多樣的,其中“面積法”是常用的方法.小麗發(fā)現(xiàn):當(dāng)四個全等的直角三角形如圖擺放時,可以用“面積法”來證明勾股定理.請寫出勾股定理的內(nèi)容,并利用給定的圖形進行證明.-參考答案-一、單選題1、B【解析】【詳解】要求所用細線的最短距離,需將長方體的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.解:將長方體展開,連接AB′,則AB′最短.∵AA′=3+2+3+2=10cm,A′B′=6cm,∴AB′=cm.故選B..2、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設(shè)三邊長為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點】本題考查了等腰三角形的判定和勾股定理逆定理.此題關(guān)鍵是利用勾股定理的逆定理解答.3、B【解析】【分析】先利用展開圖確定最短路線,再利用勾股定理求解即可.【詳解】解:如圖,螞蟻沿路線AM爬行時距離最短;∵正方體盒子棱長為2,M為BC的中點,∴,∴,故選:B.【考點】本題考查了螞蟻爬行的最短路徑為題,涉及到了正方形的性質(zhì)、正方體的展開圖、勾股定理、兩點之間線段最短等知識,解題關(guān)鍵是牢記相關(guān)概念與靈活應(yīng)用.4、C【解析】【分析】根據(jù)每個小網(wǎng)格都為正方形,設(shè)每個網(wǎng)格為1,由勾股定理可以求出AD、AC、CD的長,再由勾股定理的逆定理得到△ACD為等腰直角三角形,同理可得△ABC為等腰直角三角形,即∠BAC=∠DAC.【詳解】解:如圖,設(shè)正方形每個網(wǎng)格的邊長都為1,連接CD、BC,則,,,,為等腰直角三角形,,同理:,,,,為等腰直角三角形,,.故選:C.【考點】本題考查勾股定理的性質(zhì)、勾股定理的逆定理以及等腰直角三角形的判定,解本題的關(guān)鍵要掌握勾股定理及逆定理的基本知識.5、D【解析】【分析】根據(jù)題意可得每“生長”一次,面積和增加1,據(jù)此即可求得“生長”了2021次后形成的圖形中所有的正方形的面積和.【詳解】解:如圖,由題意得:SA=1,由勾股定理得:SB+SC=1,則“生長”了1次后形成的圖形中所有的正方形的面積和為2,同理可得:“生長”了2次后形成的圖形中所有的正方形面積和為3,“生長”了3次后形成的圖形中所有正方形的面積和為4,……“生長”了2021次后形成的圖形中所有的正方形的面積和是2022,故選:D【考點】本題考查了勾股數(shù)規(guī)律問題,找到規(guī)律是解題的關(guān)鍵.6、B【解析】【分析】把圓柱沿著點A所在母線展開,把圓柱上最短距離轉(zhuǎn)化為將軍飲馬河型最短問題求解即可.【詳解】把圓柱沿著點A所在母線展開,如圖所示,作點A的對稱點B,連接PB,則PB為所求,根據(jù)題意,得PC=8,BC=6,根據(jù)勾股定理,得PB=10,故選B.【考點】本題考查了圓柱上的最短問題,利用圓柱展開,把問題轉(zhuǎn)化為將軍飲馬河問題,靈活使用勾股定理是解題的關(guān)鍵.7、C【解析】【分析】連接AG,證明△ABG≌△AFG,得到FG=BG,△ADE沿AE對折至△AEF,則EF=DE,設(shè)DE=x,則EF=x,EC=12-x,則Rt△EGC中根據(jù)勾股定理列方程可求出DE的值.【詳解】如圖,連接AG,∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=12.∵△ADE沿AE對折至△AEF,∴EF=DE,AF=AD,∵AF=AD,AB=AD,∴AF=AB,又AG是公共邊,∴△ABG≌△AFG(HL),∵G剛好是BC邊的中點,∴BG=FG=,設(shè)DE=x,則EF=x,EC=12-x,在Rt△EGC中,根據(jù)勾股定理列方程:62+(12-x)2=(x+6)2解得:x=4.所以ED的長是4,答案選C.【考點】本題考查了正方形和全等三角形的綜合知識,根據(jù)勾股定理列方程是本題的解題關(guān)鍵.二、填空題1、34【解析】【分析】首先展開圓柱的側(cè)面,即是矩形,接下來根據(jù)兩點之間線段最短,可知CF的長即為所求;然后結(jié)合已知條件求出DF與CD的長,再利用勾股定理進行計算即可.【詳解】如圖為圓柱形玻璃容器的側(cè)面展開圖,線段CF是蜘蛛由C到F的最短路程.根據(jù)題意,可知DF=18-1-1=16(cm),CD(cm),∴(cm),即蜘蛛所走的最短路線的長度是34cm.故答案為34.【考點】此題是有關(guān)最短路徑的問題,關(guān)鍵在于把立體圖形展開成平面圖形,找出最短路徑;2、【解析】【分析】根據(jù)題意設(shè)直角三角形的三邊為,分別表示出,得出,進而即可求解.【詳解】解:設(shè)直角三角形的三邊為,如圖,,,,,S1=18π,S3=50π,故答案為:.【考點】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.3、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長為尺,根據(jù)題意可列方程為:.故答案為:.【考點】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.4、【解析】【分析】由題意知AD+DB=BC+CA,設(shè)BD=x,則AD=15-x,且在直角△ACD中,代入勾股定理公式中即可求x的值,樹高CD=(5+x)米即可.【詳解】解:由題意知AD+DB=BC+CA,且CA=10米,BC=5米,設(shè)BD=x,則AD=15-x,∵在Rt△ACD中,由勾股定理可得:CD2+CA2=AD2,即,解得x=2.5米,故樹高為CD=5+x=7.5(米),答:樹高為7.5米.故答案為:7.5.【考點】本題考查了勾股定理在實際生活中的應(yīng)用,本題中找到AD+DB=BC+CA的等量關(guān)系,并根據(jù)勾股定理列方程求解是解題的關(guān)鍵.5、6【解析】【分析】由已知條件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面積即可得出答案.【詳解】解:∵Rt△ABC的周長為15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405?225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD==6;故答案為:6.【考點】本題考查了勾股定理,三角形的面積公式,完全平方公式,三角形的周長的計算,熟記直角三角形的性質(zhì)是解題的關(guān)鍵.6、15【解析】【分析】根據(jù)勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據(jù)勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點】此題主要考查了勾股定理,注意根據(jù)正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關(guān)系:以直角三角形的兩條直角邊為邊長的兩個正方形的面積和等于以斜邊為邊長的面積.7、6【解析】【分析】根據(jù)勾股定理求解即可.【詳解】∵Rt△ABC中,∠C=90°,AB=10,AC=8,∴BC===6故答案為:6.【考點】本題考查勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.8、3【解析】【分析】在中,由正弦定義解得,再由勾股定理解得DE的長,根據(jù)同角的余角相等,得到,最后根據(jù)正弦定義解得CD的長即可解題.【詳解】解:在中,在矩形中,故答案為:3.【考點】本題考查矩形的性質(zhì)、正弦、勾股定理等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.三、解答題1、(1)見解析;(2)①30°;②2【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)求解即可;(2)①方法一:連接EP,過點P作GQ∥BC分別交AB,AC于點G,Q,易知△AGQ和△DEP均為等邊三角形,得到△ADE≌△GPD≌△QEP(AAS),即可得解;方法二:在DB上取DG=AE,證明△ADE≌△GPD(SAS),即可得解;②在DB上取DG=AE,當(dāng)時,PM取得最小值,得到PM=2,PB=2,過點G作GH⊥BP于點H,利用直角三角形的性質(zhì)求解即可;【詳解】解:(1)在等邊△ABC中,∵AB=AC,∠A=∠ABC=∠C=60°,∵∠EDF=60°,∴∠ADE+∠BDF=∠ADE+∠AED=120°,∴∠AED=∠BDF;(2)①方法一:如答題圖1,連接EP,過點P作GQ∥BC分別交AB,AC于點G,Q,易知△AGQ和△DEP均為等邊三角形,∴BG=CQ,∠AGQ=60°,∴∠ADE+∠BDF=∠ADE+∠AED=120°,∴∠AED=∠BDF,同理∠BDF=∠EPQ,∴可證:△ADE≌△GPD≌△QEP(AAS),∴AD=GP=QE,∵CE=2AD=CQ+EQ=AD+BG,∴PG=BG,∴∠DBP=∠BPG=30°;方法二:如答題圖2,在DB上取DG=AE,∵∠AED=∠BDF又∵DP=DE,∴△ADE≌△GPD(SAS),∴PG=AD,∠PGD=60°,∵CE=AC-AE=AB-DG=AD+BG=2AD,∴BG=AD=PG,∴∠DBP=∠BPG=30°;②如答圖3,在DB上取DG=AE,由①可知∠MBP=30°,AD=BG=PG;當(dāng)時,PM取得最小值;在Rt△BMP中,∠MBP=30°,BM=4,∴PM=2,PB=2;過點G作GH⊥BP于點H,∵BG=PG,∴BH=;在Rt△BGH中,∠GBP=30°,BH=∴BG=2,∴AD=BG=2.【考點】本題主要考查了全等三角形的判定與性質(zhì)、等邊三角形的綜合應(yīng)用,準確計算是解題的關(guān)鍵.2、(1)詳見解析;(2)S四邊形ABCD=56【解析】【分析】(1)由等角的余角相等可得∠DAC=∠ABE,再根據(jù)題意可得Rt△BAE≌Rt△ADC,即可證;(2)根據(jù)勾股定理算出AC,由全等可得BE=AC,再算出△ACD的面積和△ABC的面積相加即可.【詳解】解:(1)∵BE⊥AC,∴∠ABE+∠BAE=90°,∵BAD=90°,∴∠BAE+∠DAC=90°,∴∠DAC=∠ABE,又∵AB=AD,∠BEA=∠ACD,∴Rt△BAE≌Rt△ADC(AAS),∴BE=AC.(2)∵AB=AD=10,CD=6,∠ACD=90°,∴,∵Rt△BAE≌Rt△ADC,∴BE=AC=8,∴.【考點】本題考查三角形全等的判定和性質(zhì),三角形面積,關(guān)鍵在于牢記基礎(chǔ)知識并靈活使用.3、(1)△BDC為直角三角形,理由見解析;(2)△ABC的周長為=cm.【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以△BDC為直角三角形;(2)由此可求出AC的長,周長即可求出.(1)解:△BDC為直角三角形,理由如下,∵BC=10cm,CD=8cm,BD=6cm,而102=62+82,∴BC2=BD2+CD2.∴△BDC為直角三角形;(2)解:設(shè)AB=xcm,∵等腰△ABC,∴AB=AC=x,則AD=x-6,∵AB2=AD2+BD2,即x2=(x-6)2+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年鄭州市第九十九中學(xué)招聘公益性崗位工作人員21名考前自測高頻考點模擬試題及一套答案詳解
- 熱力站氣候適應(yīng)性方案
- 鋁土礦礦區(qū)環(huán)境影響評估方案
- 施工現(xiàn)場現(xiàn)場危險源識別與防控方案
- 建設(shè)項目勘察報告審查與優(yōu)化方案
- 勘察數(shù)據(jù)可視化與應(yīng)用方案
- Quinidine-hydrochloride-monohydrate-Standard-生命科學(xué)試劑-MCE
- Pterygospermin-生命科學(xué)試劑-MCE
- 2025年環(huán)境檢測考試試題及答案
- 灰資源化利用項目社會穩(wěn)定風(fēng)險評估報告
- 2025年海工裝備行業(yè)研究報告及未來發(fā)展趨勢預(yù)測
- 高考物理力學(xué)專題復(fù)習(xí)指導(dǎo)方案
- 高三試卷:2025屆浙江省新陣地聯(lián)盟高三10月聯(lián)考歷史答案
- 醫(yī)療機構(gòu)麻醉藥品和精神藥品使用管理和考核培訓(xùn)規(guī)定
- 主題一 4. 創(chuàng)建我們的“健康銀行”(課件) 綜合實踐活動教科版五年級上冊
- 2025農(nóng)村果園租賃合同示范文本
- 人教版二年級數(shù)學(xué)上冊第二單元 1~6的表內(nèi)乘法必刷卷 (含答案)
- 公司財務(wù)流程透明化披露方案模板
- 法院反詐騙法律知識培訓(xùn)課件
- 2025年執(zhí)業(yè)藥師考試題庫大全-附答案
- 2024年下半年黑龍江省嫩江鐵路有限責(zé)任公司校招筆試題帶答案
評論
0/150
提交評論