




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一、解答題1.如圖:在四邊形ABCD中,A、B、C、D四個點的坐標分別是:(-2,0)、(0,6)、(4,4)、(2,0)現將四邊形ABCD先向上平移1個單位,再向左平移2個單位,平移后的四邊形是A'B'C′D'(1)請畫出平移后的四邊形A'B'C′D'(不寫畫法),并寫出A'、B'、C′、D'四點的坐標.(2)若四邊形內部有一點P的坐標為(a,b)寫點P的對應點P′的坐標.(3)求四邊形ABCD的面積.2.如圖1,已知直線CD∥EF,點A,B分別在直線CD與EF上.P為兩平行線間一點.(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關系?并說明理由;(3)利用(2)的結論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請你寫出∠P與∠P1的數量關系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數式表示)3.已知:AB∥CD,截線MN分別交AB、CD于點M、N.(1)如圖①,點B在線段MN上,設∠EBM=α°,∠DNM=β°,且滿足+(β﹣60)2=0,求∠BEM的度數;(2)如圖②,在(1)的條件下,射線DF平分∠CDE,且交線段BE的延長線于點F;請寫出∠DEF與∠CDF之間的數量關系,并說明理由;(3)如圖③,當點P在射線NT上運動時,∠DCP與∠BMT的平分線交于點Q,則∠Q與∠CPM的比值為(直接寫出答案).4.如圖,已知直線射線CD,.P是射線EB上一動點,過點P作PQEC交射線CD于點Q,連接CP.作,交直線AB于點F,CG平分.(1)若點P,F,G都在點E的右側,求的度數;(2)若點P,F,G都在點E的右側,,求的度數;(3)在點P的運動過程中,是否存在這樣的情形,使?若存在,求出的度數;若不存在,請說明理由.5.如圖1,已知直線m∥n,AB是一個平面鏡,光線從直線m上的點O射出,在平面鏡AB上經點P反射后,到達直線n上的點Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質:入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數;(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數;(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構成四邊形ABCD,光線從點O以適當的角度射出后,其傳播路徑為O→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數量關系,并說明理由.6.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關系?請證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結論?請直接寫出結論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數為.7.定義:如果,那么稱b為n的布谷數,記為.例如:因為,所以,因為,所以.(1)根據布谷數的定義填空:g(2)=________________,g(32)=___________________.(2)布谷數有如下運算性質:若m,n為正整數,則,.根據運算性質解答下列各題:①已知,求和的值;②已知.求和的值.8.先閱讀然后解答提出的問題:設a、b是有理數,且滿足,求ba的值.解:由題意得,因為a、b都是有理數,所以a﹣3,b+2也是有理數,由于是無理數,所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問題:設x、y都是有理數,且滿足,求x+y的值.9.觀察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1……(1)根據以上規(guī)律,則(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(2)你能否由此歸納出一般性規(guī)律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.(3)根據以上規(guī)律求1+3+32+…+349+350的結果.10.閱讀材料,回答問題:(1)對于任意實數x,符號表示“不超過x的最大整數”,在數軸上,當x是整數,就是x,當x不是整數時,是點x左側的第一個整數點,如,,,,則________,________.(2)2015年11月24日,杭州地鐵1號線下沙延伸段開通運營,極大的方便了下沙江濱居住區(qū)居民的出行,杭州地鐵收費采用里程分段計價,起步價為2元/人次,最高價為8元/人次,不足1元按1元計算,具體權費標準如下:里程范圍4公里以內(含4公里)4-12公里以內(含12公里)12-24公里以內(含24公里)24公里以上收費標準2元4公里/元6公里/元8公里/元①若從下沙江濱站到文海南路站的里程是3.07公里,車費________元,下沙江濱站到金沙湖站里程是7.93公里,車費________元,下沙江濱站到杭州火東站里程是19.17公里,車費________元;②若某人乘地鐵花了7元,則他乘地鐵行駛的路程范圍(不考慮實際站點下車里程情況)?11.請觀察下列等式,找出規(guī)律并回答以下問題.,,,,……(1)按照這個規(guī)律寫下去,第5個等式是:______;第n個等式是:______.(2)①計算:.②若a為最小的正整數,,求:.12.定義:對任意一個兩位數,如果滿足個位數字與十位數字互不相同,且都不為零,那么稱這個兩位數為“奇異數”.將一個“奇異數”的個位數字與十位數字對調后得到一個新的兩位數,把這個新兩位數與原兩位數的和與的商記為例如:,對調個位數字與十位數字后得到新兩位數是,新兩位數與原兩位數的和為,和與的商為,所以根據以上定義,完成下列問題:(1)填空:①下列兩位數:,,中,“奇異數”有.②計算:..(2)如果一個“奇異數”的十位數字是,個位數字是,且請求出這個“奇異數”(3)如果一個“奇異數”的十位數字是,個位數字是,且滿足,請直接寫出滿足條件的的值.13.如圖1,在平面直角坐標系中,點A為x軸負半軸上一點,點B為x軸正半軸上一點,,,其中a、b滿足關系式:.______,______,的面積為______;如圖2,石于點C,點P是線段OC上一點,連接BP,延長BP交AC于點當時,求證:BP平分;提示:三角形三個內角和等于如圖3,若,點E是點A與點B之間上一點連接CE,且CB平分問與有什么數量關系?請寫出它們之間的數量關系并請說明理由.14.綜合與實踐課上,同學們以“一個直角三角形和兩條平行線”為背景開展數學活動,如圖,已知兩直線,且是直角三角形,,操作發(fā)現:(1)如圖1.若,求的度數;(2)如圖2,若的度數不確定,同學們把直線向上平移,并把的位置改變,發(fā)現,請說明理由.(3)如圖3,若∠A=30°,平分,此時發(fā)現與又存在新的數量關系,請寫出與的數量關系并說明理由.15.如圖所示,A(1,0)、點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,且點C的坐標為(-3,2).(1)直接寫出點E的坐標;D的坐標(3)點P是線段CE上一動點,設∠CBP=x°,∠PAD=y°,∠BPA=z°,確定x,y,z之間的數量關系,并證明你的結論.16.在平面直角坐標系中,對于任意兩點,,如果,則稱與互為“距點”.例如:點,點,由,可得點與互為“距點”.(1)在點,,中,原點的“距點”是_____(填字母);(2)已知點,點,過點作平行于軸的直線.①當時,直線上點的“距點”的坐標為_____;②若直線上存在點的“點”,求的取值范圍.(3)已知點,,,的半徑為,若在線段上存在點,在上存在點,使得點與點互為“距點”,直接寫出的取值范圍.17.如圖1,在平面直角坐標系中,點O是坐標原點,邊長為2的正方形ABCD(點D與點O重合)和邊長為4的正方形EFGH的邊CO和GH都在x軸上,且點H坐標為(7,0).正方形ABCD以3個單位長度/秒的速度沿著x軸向右運動,記正方形ABCD和正方形EFGH重疊部分的面積為S,假設運動時間為t秒,且t<4.(1)點F的坐標為;(2)如圖2,正方形ABCD向右運動的同時,動點P在線段FE上,以1個單位長度/秒的速度從F到E運動.連接AP,AE.①求t為何值時,AP所在直線垂直于x軸;②求t為何值時,S=S△APE.18.在平面直角坐標系中,已知點,,連接,將向下平移6個單位得線段,其中點的對應點為點.(1)填空:點的坐標為______,線段平移到掃過的面積為______.(2)若點是軸上的動點,連接.①如圖,當點在軸正半軸時,線段與線段相交于點,用等式表示三角形的面積與三角形的面積之間的關系,并說明理由.②當將四邊形的面積分成1∶3兩部分時,求點的坐標.19.學校將20××年入學的學生按入學年份、年級、班級、班內序號的順序給每一位學生編號,如2015年入學的8年級3班的46號學生的編號為15080346.張山同學模仿二維碼的方式給學生編號設計了一套身份識別系統(tǒng),在5×5的正方形風格中,黑色正方形表示數字1,白色正方形表示數字0.我們把從上往下數第i行、從左往右數第j列表示的數記為aij,(其中,i、j=1,2,3,4,5),規(guī)定Ai=16ai1+8ai2+4ai3+2ai4+ai5.(1)若A1表示入學年份,A2表示所在年級,A3表示所在班級,A4表示編號的十位數字,A5表示編號的個位數字.①圖1是張山同學的身份識別圖案,請直接寫出張山同學的編號;②請在圖2中畫出2018年入學的9年級5班的39號同學的身份識別圖案;(2)張山同學又設計了一套信息加密系統(tǒng),其中A1表示入學年份加8,A2表示所在年級的數減6再加上所在班級的數,A3表示所在年級的數乘2后減3再減所在班級的數,將編號(班內序號)的末兩位單列出來,作為一個兩位數,個位與十位數字對換后再加2,所得結果的十位數字用A4表示、個位數字用A5表示.例如:2018年9年級5班的39號同學,其加密后的身份識別圖案中,A1=18+8=26,A2=9-6+5=8,A3=9×2-3-5=10,93+2=95,所以A4=9,A5=5,所以其加密后的身份識別(26081095)圖案如圖3所示.圖4是李思同學加密后的身份識別圖案,請求出李思同學的編號.20.五一節(jié)前,某商店擬購進A、B兩種品牌的電風扇進行銷售,已知購進3臺A種品牌電風扇所需費用與購進2臺B種品牌電風扇所需費用相同,購進1臺A種品牌電風扇與2臺B種品牌電風扇共需費用400元.(1)求A、B兩種品牌電風扇每臺的進價分別是多少元?(2)銷售時,該商店將A種品牌電風扇定價為180元/臺,B種品牌電風扇定價為250元/臺,商店擬用1000元購進這兩種風扇(1000元剛好全部用完),為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用哪種進貨方案?21.(閱讀感悟)一些關于方程組的問題,若求的結果不是每一個未知數的值,而是關于未知數的式子的值,如以下問題:已知實數,滿足①,②,求和的值.本題的常規(guī)思路是將①②兩式聯立組成方程組,解得,的值再代入欲求值的式子得到答案,常規(guī)思路運算量比較大.其實,仔細觀察兩個方程未知數的系數之間的關系,本題還可以通過適當變形整體求得式子的值,如由①-②可得,由①+②×2可得.這樣的解題思想就是通常所說的“整體思想”.(解決問題)(1)已知二元一次方程組,則,.(2)某班開展安全教育知識競賽需購買獎品,買5支鉛筆、3塊橡皮、2本日記本共需32元,買9支鉛筆、5塊橡皮、3本日記本共需58元,則購買20支鉛筆、20塊橡皮、20本日記本共需多少元?(3)對于實數,,定義新運算:,其中,,是常數,等式右邊是通常的加法和乘法運算.已知,,求的值.22.已知:用3輛A型車和2輛B型車載滿貨物一次可運貨17噸;用2輛A型車和3輛B型車載滿貨物一次可運貨l8噸,某物流公刊現有35噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.根據以上信息,解答下列問題:(1)l輛A型車和l輛B型車都載滿貨物一次可分別運貨多少噸?(2)請你幫該物流公司設計租車方案;(3)若A型車每輛需租金200元/次,B型車每輛需租金240元/次,請選出最省錢的租車方案,并求出最少租車費.23.閱讀下面資料:小明遇到這樣一個問題:如圖1,對面積為a的△ABC逐次進行以下操作:分別延長AB、BC、CA至A1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.小明是這樣思考和解決這個問題的:如圖2,連接A1C、B1A、C1B,因為A1B2AB,B1C2BC,C1A2CA,根據等高兩三角形的面積比等于底之比,所以2S△ABC2a,由此繼續(xù)推理,從而解決了這個問題.(1)直接寫出S1(用含字母a的式子表示).請參考小明同學思考問題的方法,解決下列問題:(2)如圖3,P為△ABC內一點,連接AP、BP、CP并延長分別交邊BC、AC、AB于點D、E、F,則把△ABC分成六個小三角形,其中四個小三角形面積已在圖上標明,求△ABC的面積.(3)如圖4,若點P為△ABC的邊AB上的中線CF的中點,求S△APE與S△BPF的比值.24.定義一種新運算“a※b”:當a≥b時,a※b=2a+b;當a<b時,a※b=2a﹣b.例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24.(1)填空:(﹣2)※3=;(2)若(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),則x的取值范圍為;(3)已知(2x﹣6)※(9﹣3x)<7,求x的取值范圍;(4)小明在計算(2x2﹣2x+4)※(x2+4x﹣6)時隨意取了一個x的值進行計算,得出結果是0,小麗判斷小明計算錯了,小麗是如何判斷的?請說明理由.25.某體育拓展中心的門票每張10元,一次性使用考慮到人們的不同需求,也為了吸引更多的顧客,該拓展中心除保留原來的售票方法外,還推出了一種“購買個人年票”(個人年票從購買日起,可供持票者使用一年)的售票方法.年票分A、B兩類:A類年票每張120元,持票者可不限次進入中心,且無需再購買門票;B類年票每張60元,持票者進入中心時,需再購買門票,每次2元.(1)小麗計劃在一年中花費80元在該中心的門票上,如果只能選擇一種購買門票的方式,她怎樣購票比較合算?(2)小亮每年進入該中心的次數約20次,他采取哪種購票方式比較合算?(3)小明根據自己進入拓展中心的次數,購買了A類年票,請問他一年中進入該中心不低于多少次?26.在平面直角坐標系xOy中,已知點M(a,b).如果存在點N(a′,b′),滿足a′=|a+b|,b′=|a﹣b|,則稱點N為點M的“控變點”.(1)點A(﹣1,2)的“控變點”B的坐標為;(2)已知點C(m,﹣1)的“控變點”D的坐標為(4,n),求m,n的值;(3)長方形EFGH的頂點坐標分別為(1,1),(5,1),(5,4),(1,4).如果點P(x,﹣2x)的“控變點”Q在長方形EFGH的內部,直接寫出x的取值范圍.27.我們把關于x的一個一元一次方程和一個一元一次不等式組合成一種特殊組合,且當一元一次方程的解正好也是一元一次不等式的解時,我們把這種組合叫做“有緣組合”;當一元一次方程的解不是一元一次不等式的解時,我們把這種組合叫做“無緣組合”.(1)請判斷下列組合是“有緣組合”還是“無緣組合”,并說明理由;①;②.(2)若關于x的組合是“有緣組合”,求a的取值范圍;(3)若關于x的組合是“無緣組合”;求a的取值范圍.28.中國傳統(tǒng)節(jié)日“端午節(jié)”期間,某商場開展了“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌的粽子進行了打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分別為多少元?(2)在商場讓利促銷活動期間,某敬老院準備購買甲、乙兩種品牌粽子共40盒,總費用不超過2300元,問敬老院最多可購買多少盒乙品牌粽子?29.如圖,已知,,且滿足.(1)求、兩點的坐標;(2)點在線段上,、滿足,點在軸負半軸上,連交軸的負半軸于點,且,求點的坐標;(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內的點,過作軸于,若,且,求點的坐標.30.某生態(tài)柑橘園現有柑橘21噸,計劃租用A,B兩種型號的貨車將柑橘運往外地銷售.已知滿載時,用2輛A型車和3輛B型車一次可運柑橘12噸;用3輛A型車和4輛B型車一次可運柑橘17噸.(1)1輛A型車和1輛B型車滿載時一次分別運柑橘多少噸?(2)若計劃租用A型貨車m輛,B型貨車n輛,一次運完全部柑橘,且每輛車均為滿載.①請幫柑橘園設計租車方案;②若A型車每輛需租金120元/次,B型車每輛需租金100元/次.請選出最省錢的租車方案,并求出最少租車費.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)圖見解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫出圖形,再根據圖形寫出對應點的坐標進而得出答案;(2)利用平移規(guī)律進而得出對應點坐標的變化規(guī)律:向上平移1個單位,縱坐標加1;向左平移2個單位,橫坐標減2;(3)利用四邊形ABCD所在的最小矩形面積減去周圍三角形面積進而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內部有一點P的坐標為(a,b)寫點P的對應點P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點睛】此題主要考查了平移變換以及坐標系內四邊形面積求法,正確得出對應點位置是解題關鍵.2.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據兩直線平行,內錯角相等可得∠APM=∠DAP,再根據平行公理求出CD∥EF然后根據兩直線平行,內錯角相等可得∠MPB=∠FBP,最后根據∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結論:∠APB=∠DAP+∠FBP.(3)①根據(2)的規(guī)律和角平分線定義解答;②根據①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內錯角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內錯角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點睛】本題考查了平行線的性質,角平分線的定義,熟記性質與概念是解題的關鍵,此類題目,難點在于過拐點作平行線.3.(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負性可求α,β的值,由平行線的性質和外角性質可求解;(2)過點E作直線EH∥AB,由角平分線的性質和平行線的性質可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的數量可求解;(3)由平行線的性質和外角性質可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【詳解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:過點E作直線EH∥AB,∵DF平分∠CDE,∴設∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如圖3,設MQ與CD交于點E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q與∠CPM的比值為,故答案為:.【點睛】本題主要考查了平行線的性質、角平分線的性質,準確計算是解題的關鍵.4.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據平行線的性質以及角平分線的定義,即可得到∠PCG的度數;(2)依據平行線的性質以及角平分線的定義,即可得到∠ECG=∠GCF=25°,再根據PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)設∠EGC=4x,∠EFC=3x,則∠GCF=4x-3x=x,分兩種情況討論:①當點G、F在點E的右側時,②當點G、F在點E的左側時,依據等量關系列方程求解即可.【詳解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)設∠EGC=4x,∠EFC=3x,則∠GCF=∠FCD=4x-3x=x,①當點G、F在點E的右側時,則∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②當點G、F在點E的左側時,則∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,同旁內角互補;兩直線平行,內錯角相等.5.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據∠OPA=∠QPB.可求出∠OPA的度數;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數,轉化為(1)來解決問題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點睛】本題主要考查了平行線的性質和入射角等于反射角的規(guī)定,解決本題的關鍵是注意問題的設置環(huán)環(huán)相扣、前為后用的設置目的.6.(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點E作EF//AB,利用平行線的性質則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,根據探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點M作EF∥AB,過點N作GH∥AB,則可由平行線的性質得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結論.【詳解】解:(1)過點E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內錯角相等,兩直線平行).∴AB//CD.(2)過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點M作EF∥AB,過點N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點睛】本題考查了平行線的性質與判定,屬于基礎題,關鍵是過E點作AB(或CD)的平行線,把復雜的圖形化歸為基本圖形.7.(1)1;5;(2)①3.807,0.807;②;.【分析】(1)根據布谷數的定義把2和32化為底數為2的冪即可得出答案;(2)①根據布谷數的運算性質,g(14)=g(2×7)=g(2)+g(7),,再代入數值可得解;②根據布谷數的運算性質,先將兩式化為,,再代入求解.【詳解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案為1,32;(2)①g(14)=g(2×7)=g(2)+g(7),∵g(7)=2.807,g(2)=1,∴g(14)=3.807;g(4)=g(22)=2,∴=g(7)-g(4)=2.807-2=0.807;故答案為3.807,0.807;②∵.∴;.【點睛】本題考查有理數的乘方運算,新定義;能夠將新定義的運算轉化為有理數的乘方運算是解題的關鍵.8.7或-1.【分析】根據題目中給出的方法,對所求式子進行變形,求出x、y的值,進而可求x+y的值.【詳解】解:∵,∴,∴=0,=0∴x=±4,y=3當x=4時,x+y=4+3=7當x=-4時,x+y=-4+3=-1∴x+y的值是7或-1.【點睛】本題考查實數的運算,解題的關鍵是弄清題中給出的解答方法,然后運用類比的思想進行解答.9.(1)x7-1;(2)xn+1-1;(3).【分析】(1)仿照已知等式寫出答案即可;(2)先歸納總結出規(guī)律,然后按規(guī)律解答即可;(3)先利用得出規(guī)律的變形,然后利用規(guī)律解答即可.【詳解】解:(1)根據題意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根據題意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=×(3-1)(1+3+32+···+349+350)=×(x50+1-1)=故答案為:(1)x7-1;(2)xn+1-1;(3).【點睛】本題考查了平方差公式以及規(guī)律型問題,弄清題意、發(fā)現數字的變化規(guī)律是解答本題的關鍵.10.(1);;(2)①2;3;6.②這個乘客花費7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【分析】(1)根據題意,確定實數左側第一個整數點所對應的數即得;(2)①根據表格確定乘坐里程的對應段,然后將乘坐里程分段計費并累加即得;②根據表格將每段的費用從左至右依次累加直至費用為7元,進而確定7元乘坐的具體里程即得.【詳解】(1)∵∴∵∴故答案為:;.(2)①∵∴3.07公里需要2元∵∴7.93公里所需費用分為兩段即:前4公里2元,后3.93公里1元∴7.93公里所需費用為:(元)∵∴公里所需費用分為三段計費即:前4公里2元,4至12公里2元,12公里至19.17公里2元;∴公里所需費用為:(元)故答案為:2;3;6.②由題意得:乘坐24公里所需費用分為三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需費用為:(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地鐵最大里程為:(公里)∴這個乘客花費7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里答:這個乘客花費7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【點睛】本題是閱讀材料題,考查了實數的實際應用,根據材料中的新定義舉一反三并挖掘材料中深層次含義是解題關鍵.11.(1),;(2)①;②【分析】(1)根據規(guī)律可得第5個算式;根據規(guī)律可得第n個算式;(2)①根據運算規(guī)律可得結果.②利用非負數的性質求出與的值,代入原式后拆項變形,抵消即可得到結果.【詳解】(1)根據規(guī)律得:第5個等式是,第n個等式是;(2)①,,,;②為最小的正整數,,,,原式,,,,.【點睛】本題主要考查了數字的變化規(guī)律,發(fā)現規(guī)律,運用規(guī)律是解答此題的關鍵.12.(1)①,②,;(2);(3)【分析】(1)①由“奇異數”的定義可得;②根據定義計算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根據題意可列出等式,可求出x、y的值,即可求的值.【詳解】解:(1)①∵對任意一個兩位數a,如果a滿足個位數字與十位數字互不相同,且都不為零,那么稱這個兩位數為“奇異數”.∴“奇異數”為21;②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根據題意有∵∴∴∵x、y為正數,且x≠y∴x=6,y=5∴a=6×10+5=65故答案為:(1)①,②,;(2);(3)【點睛】本題考查了新定義下的實數運算,能理解“奇異數”定義是本題的關鍵.13.(1);;6;(2)證明見解析;(3)
,理由見解析.【詳解】分析:(1)求出CD的長度,再根據三角形的面積公式列式計算即可得解;(2)根據等角的余角相等解答即可;(3)首先證明∠ACD=∠ACE,推出∠DCE=2∠ACD,再證明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解決問題;【解答】(1)解:如圖1中,∵|a+4|+(b-a-1)2=0,∴a=-4,b=-3,∵點C(0,-4),D(-3,-4),∴CD=3,且CD∥x軸,∴△BCD的面積=×4×3=6;故答案為-4,-3,6.(2)如圖2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)如圖3中,結論:∠BEC=2∠BCO.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,-4),D(-3,-4),∴CD∥AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,點睛:本題考查了坐標與圖形性質,三角形的角平分線,三角形的面積,三角形的內角和定理,三角形的外角性質等知識,熟記性質并準確識圖是解題的關鍵.14.(1)42°;(2)見解析;(3)∠1=∠2,理由見解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質即可得出答案;(2)過點B作BD∥a.由平行線的性質得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進而得出結論;(3)過點C
作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過點B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過點C
作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點睛】本題是三角形綜合題目,考查了平移的性質、直角三角形的性質、平行線的判定與性質、角平分線定義、平角的定義等知識;本題綜合性強,熟練掌握平移的性質和平行線的性質是解題的關鍵.15.(1)(-2,0);(-3,0);(2)z=x+y.證明見解析.【分析】(1)依據平移的性質可知BC∥x軸,BC=AE=3,然后依據點A和點C的坐標可得到點E和點D的坐標;(2過點P作PF∥BC交AB于點F,則PF∥AD,然后依據平行線的性質可得到∠BPF=∠CBP=x°,∠APF=∠DAP=y°,最后,再依據角的和差關系進行解答即可.【詳解】解:(1)∵將三角形OAB沿x軸負方向平移,∴BC∥x軸,BC=AE=3.∵C(-3,2),A(1,0),∴E(-2,0),D(-3,0).故答案為:(-2,0);(-3,0).(2)z=x+y.證明如下:如圖,過點P作PF∥BC交AB于點F,則PF∥AD,∴∠BPF=∠CBP=x°,∠APF=∠DAP=y°,∴∠BPA=∠BPF+∠APF=x°+y°=z°,∴z=x+y.【點睛】此題是幾何變換綜合題,主要考查了點的坐標的特點,平移得性質,平面坐標系中點的坐標和距離的關系,解本題的關鍵是由線段和部分點的坐標,得出其它點的坐標.16.(1);(2)①;②;(3).【分析】(1)根據定義判斷即可;(2)①設直線上與點的“距點”的點的坐標為(a,3),根據定義列出關于a的方程,解方程即可;②點坐標為,直線上點的縱坐標為b,由題意得,轉化為不等式組,解不等式組即可.(3)分類討論,分別取P與點M重合、P與點N重合討論。當點P與點M重合時,設⊙C左側與x軸交于點Q,則點Q的坐標是(m-,0),根據定義列出關于m的絕對值方程,解方程,取較小的值;當點P與點N重合時,設⊙C右側與x軸交于點Q,則點Q的坐標是(m+,0),根據定義列出關于m的絕對值方程,解方程,取較大的值,問題得解.【詳解】解:(1)∵,O(0,0),∴,∴點D與原點互為“距點”;∵,O(0,0),∴,所以點D與原點互為“距點”;∵,O(0,0),∴,所以點D與原點互為“距點”;故答案為:;(2)①設直線上與點的“距點”的點的坐標為(a,3),則,解得a=2故答案為(2,3);②如圖,點坐標為,直線上點的縱坐標為b,設直線上點的坐標為(c,b)則:,∴,∴,∴,即的取值范圍是;(3)如圖(1),當點P與點M重合時,設⊙C左側與x軸交于點Q,則點Q的坐標是(m-,0),∵點P與點Q互為“5-距點",P(1,2),∴,解得:,;∵,∴?。旤cP與點N重合時,設⊙C右側與x軸交于點Q,則點Q的坐標是(m+,0),∵點P與點Q互為“5-距點",則P(3,2),∴,解得:,,∵∴取∴.【點睛】本題為新定義題型,關鍵要讀懂題目中給出的新概念,建立模型,并結合所學知識解決即可.17.(1)(3,4);(2)①t=時,AP所在直線垂直于x軸;②當t為或時,S=S△APE.【分析】(1)根據直角坐標系得出點F的坐標即可;(2)①根據AP所在直線垂直于x軸,得出關于t的方程,解答即可;②分和兩種情況,利用面積公式列出方程即可求解.【詳解】(1)由直角坐標系可得:F坐標為:(3,4);故答案為:(3,4);(2)①要使AP所在直線垂直于x軸.如圖1,只需要Px=Ax,則t+3=3t,解得:,所以即時,AP所在直線垂直于x軸;②由題意知,OH=7,所以當時,點D與點H重合,所以要分以下兩種情況討論:情況一:當時,GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情況二:當時,如圖2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,綜上所述,當t為或時,S=S△APE.【點睛】本題考查了平面直角坐標系中點的移動,一元一次方程的應用等問題,理解題意,分類討論是解題關鍵.18.(1);24;(2)①;見解析;②或【分析】(1)由平移的性質得出點C坐標,AC=6,再求出AB,即可得出結論;(2)①過點作交于,分別用CE表示出兩個三角形的面積,即可得到答案;②根據題意,可分為兩種情況進行討論分析:(i)當交線段于,且將四邊形分成面積為兩部分時;當交于點,將四邊形分成面積為兩部分時;分別求出點P的坐標即可.【詳解】解:(1)∵點A(3,5),將AB向下平移6個單位得線段CD,∴C(3,56),即:C(3,1),由平移得,AC=6,四邊形ABDC是矩形,∵A(3,5),B(7,5),∴AB=73=4,∴CD=4,∴點D的坐標為:;∴S四邊形ABDC=AB?AC=4×6=24,即:線段AB平移到CD掃過的面積為24;故答案為:;24;(2)①過點作交于,則,如圖:∴,又∵,∴.②(i)當交線段于,且將四邊形分成面積為兩部分時,連接,延長交軸于點,則,∵,又∵,∴,∴,即,∵,∴,∴,∴.(ii)當交于點,將四邊形分成面積為兩部分時,連接,延長交軸于點,則.過點作交的延長線于點,則,∴,,即,∵,∴,又∵,即,∴,∴,∴.綜上所述,或.【點睛】此題是幾何變換綜合題,主要考查了平移的性質,矩形的判定,三角形的面積公式,用分類討論的思想是解本題的關鍵.19.(1)①20070618;②見解析;(2)16080413【分析】(1)根據題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(2)根據題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(3)由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,A2=4+2=6,A3=8+1=9,由此得到李思在8年級4班,再求出A4,A5,即可得到答案.【詳解】解:(1)①在圖1中,A1=16×1+8×0+4×1+2×0+0=20,A2=16×0+8×0+4×1+2×1+1=7,A3=16×0+8×0+4×1+2×1+0=6,A4=1,A5=16×0+8×1+4×0+2×0+0=8,故答案為:20070618;②如圖所示.2018年入學的9年級5班的39號,其中:A1=18=16+0+0+1+1,A2=09=8+1A3=05=4+1,A4=3,A5=9=8+1.(2)設李思同學在x年級y班.由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,因此,李思是2016年入學的.A2=4+2=6,A3=8+1=9.由加密規(guī)則,得:,解得x=8,y=4,所以,李思在8年級4班.A4=2+1=3,A5=2+1=3,33-2=31,根據加密規(guī)則,原編號的末兩位數為13.綜上,李思同學的編號是16080413.【點睛】本題主要考查了實數與圖形,解二元一次方程組,截圖的關鍵在于能夠準確讀懂題意.20.(1)A、B兩種品牌電風扇每臺的進價分別是100元、150元;(2)為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用購進A種品牌的電風扇7臺,購進B種品牌的電風扇2臺.【分析】(1)設A種品牌電風扇每臺進價元,B種品牌電風扇每臺進價元,根據題意即可列出關于x、y的二元一次方程組,解出x、y即可.(2)設購進A品牌電風扇臺,B品牌電風扇臺,根據題意可列等式,由a和b都為整數即可求出a和b的值的幾種可能,然后分別算出每一種情況的利潤進行比較即可.【詳解】(1)設A、B兩種品牌電風扇每臺的進價分別是x元、y元,由題意得:,解得:,答:A、B兩種品牌電風扇每臺的進價分別是100元、150元;(2)設購進A種品牌的電風扇a臺,購進B種品牌的電風扇b臺,由題意得:100a+150b=1000,其正整數解為:或或,當a=1,b=6時,利潤=80×1+100×6=680(元),當a=4,b=4時,利潤=80×4+100×4=720(元),當a=7,b=2時,利潤=80×7+100×2=760(元),∵680<720<760,∴當a=7,b=2時,利潤最大,答:為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用購進A種品牌的電風扇7臺,購進B種品牌的電風扇2臺.【點睛】本題主要考查了二元一次方程組的實際應用,根據題意找出等量關系列出等式是解答本題的關鍵.21.(1)-4,4;(2)購買20支鉛筆、20塊橡皮、20本日記本共需120元;(3)1【分析】(1)由①-②得2x-2y=-8,則x-y=-4,再由①+②得4x+4y=16,則x+y=4;(2)設1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意:買5支鉛筆、3塊橡皮、2本日記本共需32元,買9支鉛筆、5塊橡皮、3本日記本共需58元,列出方程組,再由整體思想”求出x+y+z=6,即可求解;(3)由定義新運算:x※y=ax+by+c得1※4=a+4b+c=16①,1※5=a+5b+c=21②,求出a+b+c=1,即可求解.【詳解】解:(1),①-②得:2x-2y=-8,∴x-y=-4,①+②得:4x+4y=16,∴x+y=4,故答案為:-4,4;(2)設1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意得:,①×2-②得:x+y+z=6,∴20x+20y+20z=20(x+y+z)=20×6=120,即購買20支鉛筆、20塊橡皮、20本日記本共需120元;(3)∵x※y=ax+by+c,∴1※4=a+4b+c=16①,1※5=a+5b+c=21②,②-①得:b=5,∴a+c=16-4b=-4,∴a+b+c=1,∴1※1=a+b+c=1.【點睛】本題考查了二元一次方程組的應用、整體思想以及新運算等知識;熟練掌握整體思想和新運算,找準等量關系,列出方程組是解題的關鍵.22.(1)A型車、B型車都裝滿貨物一次可以分別運貨3噸、4噸;(2)最省錢的租車方案是方案一:A型車8輛,B型車2輛,最少租車費為2080元.【分析】(1)設每輛A型車、B型車都裝滿貨物一次可以分別運貨x噸、y噸,根據題目中的等量關系:用3輛A型車和2輛B型車載滿貨物一次可運貨17噸;用2輛A型車和3輛B型車載滿貨物一次可運貨l8噸,列方程組求解即可;(2)由題意得出3a+4b=35,然后由a、b為整數解,得到三中租車方案;(3)根據(2)中的所求方案,利用A型車每輛需租金200元/次,B型車每輛需租金240元/次,分別求出租車費用即可.【詳解】解:(1)設每輛A型車、B型車都裝滿貨物一次可以分別運貨x噸、y噸,依題意列方程組為:解得答:1輛A型車輛裝滿貨物一次可運3噸,1輛B型車裝滿貨物一次可運4噸.(2)結合題意,和(1)可得3a+4b=35∴a=∵a、b都是整數∴或或答:有3種租車方案:方案一:A型車9輛,B型車2輛;方案二:A型車5輛,B型車5輛;方案三:A型車1輛,B型車8輛.(3)∵A型車每輛需租金200元/次,B型車每輛需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省錢的租車方案是方案一:A型車1輛,B型車8輛,最少租車費為2120元.【點睛】此題主要考查了二元一次方程組以及二元一次方程的解法,關鍵是明確二元一次方程有無數解,但在解與實際問題有關的二元一次方程組時,要結合未知數的實際意義求解.23.(1)19a;(2)315;(3).【解析】【分析】(1)首先根據題意,求得S△A1BC=2S△ABC,同理可求得S△A1B1C=2S△A1BC,依此得到S△A1B1C1=19S△ABC,則可求得面積S1的值;(2)根據等高不等底的三角形的面積的比等于底邊的比,求解,從而不難求得△ABC的面積;(3)設S△BPF=m,S△APE=n,依題意,得S△APF=S△APC=m,S△BPC=S△BPF=m.得出,從而求解.【詳解】解:(1)連接A1C,∵B1C=2BC,A1B=2AB,∴,,,∴,∴,同理可得出:,∴S1=6a+6a+6a+a=19a;故答案為:19a;(2)過點作于點,設,,;,.,即.同理,...①,,.②由①②,得,.(3)設,,如圖所示.依題意,得,..,.,,...【點睛】此題考查了三角形面積之間的關系.(2)的關鍵是設出未知三角形的面積,然后根據等高不等底的三角形的面積的比等于底邊的比列式求解.24.(1)7;(2)x≥7;(3)或x<3;(4)詳見解析.【分析】(1)先判斷a、b的大小,再根據相應公式計算可得;(2)結合公式知3x﹣4≥2x+3,解之可得;(3)由題意可得或,分別求解可得;(4)先利用作差法判斷出2x2﹣2x+4>x2+4x﹣6,再根據公式計算(2x2﹣2x+4)※(x2+4x﹣6)即可.【詳解】(1)(﹣2)※3=2×(﹣2)﹣3=﹣7.故答案為:﹣7;(2)∵(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),∴3x﹣4≥2x+3,解得:x≥7.故答案為:x≥7.(3)由題意可知分兩種情況討論:①,解得;②,解得;綜上:x的取值范圍為或x<3;(4)∵2x2﹣2x+4﹣(x2+4x﹣6)=x2﹣6x+10=(x﹣3)2+1>0∴2x2﹣2x+4>x2+4x﹣6,∴原式=2(2x2﹣2x+4)+(x2+4x﹣6)=4x2﹣4x+8+x2+4x﹣6=5x2+4;∴小明計算錯誤.【點睛】本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟和弄清新定義是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.25.(1)應該購買B類年票,理由見解析;(2)應該購買B類年票,理由見解析;(3)小明一年中進入拓展中心不低于30次【分析】(1)因為80元小于120元,故無法購買A類年票,繼而分別討論直接購票與購買B類年票,這兩種方式何者次數更多即可.(2)本題根據進入中心的次數,分別計算小亮直接購票、購買A類年票、購買B類年票所消費的總金額,最后比較總花費大小即可.(3)小明選擇購買A類年票,說明A類年票更為劃算,故需滿足直接購票與購買B類年票所花費的金額不低于120元,最后列不等式求解即可.【詳解】(1)由于預算限制,小麗不可能買A類年票;若直接購票,可以進中心次;若購買B類年票,可進中心次,所以應該購買B類年票.(2)若直接購買門票,需花費元;若購買A類年票,需花費120元;若購買B類年票,需花費元;所以應該購買B類年票.(3)設小明每年進拓展中心約x次,根據題意列出不等式組:,解得,故.所以小明一年中進入拓展中心不低于30次.【點睛】本題考查實際問題以及不等式,解題關鍵在于對題目的理解,此類型題目需要分類討論做對比,其次需要從實際問題背景抽離數學關系,最后注意計算仔細即可.26.(1);(2)或;(3)或.【分析】(1)根據“控變點”的定義、絕對值運算法則即可得;(2)根據“控變點”的定義、絕對值運算建立方程,解絕對值方程即可得;(3)先根據“控變點”的定義求出點的坐標,再根據“點在長方形的內部”建立不等式組,解不等式組、化簡絕對值即可得.【詳解】解:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土地流轉合同模板合集5篇
- 2025年甘肅畜牧工程職業(yè)技術學院招聘工作人員模擬試卷(含答案詳解)
- 2025貴州民族大學高層次人才引進考前自測高頻考點模擬試題有答案詳解
- 2025廣東廣州市越秀區(qū)華樂街招聘綜合行政執(zhí)法隊協(xié)管員1人考前自測高頻考點模擬試題及答案詳解(名師系列)
- 2025江蘇蘇宿工業(yè)園區(qū)社區(qū)衛(wèi)生服務招聘10人模擬試卷及完整答案詳解一套
- 2025年煙臺龍口市衛(wèi)生健康局所屬事業(yè)單位公開招聘工作人員(55人)模擬試卷及答案詳解參考
- 2025年異噻唑啉酮合作協(xié)議書
- 2025年宜昌市點軍區(qū)公開招聘6名社區(qū)專職工作人員(網格員)模擬試卷及完整答案詳解一套
- 2025河南開封教投教育集團招聘116人考前自測高頻考點模擬試題及1套完整答案詳解
- 2025年度成都市大邑縣衛(wèi)生健康局所屬11家事業(yè)單位公開招聘工作人員(27人)模擬試卷及答案詳解(各地真題)
- 2025年四川省情省況考試復習題庫題庫(含答案)
- 科學教育:未來啟航
- GB/T 46134-2025天然酯在電氣設備中的維護和使用導則
- 金太陽九年級數學月考試卷及答案
- 地質技能競賽試題及答案
- GB/T 45963.2-2025數字政府架構框架第2部分:架構設計
- 現代農業(yè)裝備與應用課件
- 土工壓實度試驗規(guī)程課件
- 2025年安徽省標準化專業(yè)技術資格考試(標準化基礎知識)歷年參考題庫含答案詳解(5卷)
- 售電招聘試題及答案
- 酸堿平衡管理課件
評論
0/150
提交評論