難點詳解京改版數(shù)學(xué)9年級上冊期末試卷附參考答案詳解【綜合題】_第1頁
難點詳解京改版數(shù)學(xué)9年級上冊期末試卷附參考答案詳解【綜合題】_第2頁
難點詳解京改版數(shù)學(xué)9年級上冊期末試卷附參考答案詳解【綜合題】_第3頁
難點詳解京改版數(shù)學(xué)9年級上冊期末試卷附參考答案詳解【綜合題】_第4頁
難點詳解京改版數(shù)學(xué)9年級上冊期末試卷附參考答案詳解【綜合題】_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、把拋物線向右平移2個單位,然后向下平移1個單位,則平移后得到的拋物線解析式是(

)A. B.C. D.2、如圖,點A與點B關(guān)于原點對稱,點C在第四象限,∠ACB=90°.點D是軸正半軸上一點,AC平分∠BAD,E是AD的中點,反比例函數(shù)()的圖象經(jīng)過點A,E.若△ACE的面積為6,則的值為(

)A. B. C. D.3、把拋物線的圖象向左平移1個單位,再向上平移2個單位,所得的拋物線的函數(shù)關(guān)系式是(

)A. B. C. D.4、如圖,點O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°5、如圖,在RtABC中,∠C=90°,AC=3cm,BC=4cm,D從A出發(fā)沿AC方向以1cm/s向終點C勻速運動,過點D作DEAB交BC于點E,過點E作EF⊥BC交AB于點F,當(dāng)四邊形ADEF為菱形時,點D運動的時間為()sA. B. C. D.6、如果?ABC的各邊長都擴(kuò)大為原來的3倍,那么銳角A的正弦、余弦值是(

)A.都擴(kuò)大為原來的3倍 B.都縮小為原來的C.沒有變化 D.不能確定二、多選題(7小題,每小題2分,共計14分)1、在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,且a=5,b=12,c=13,下面四個式子中正確的有()A.sinA= B.cosA= C.tanA= D.sinB=2、在同一平面直角坐標(biāo)系中,如圖所示,正比例函數(shù)與一次函數(shù)的圖象則二次函數(shù)的圖象可能是(

)A. B.C. D.3、已知,⊙的半徑為5,,某條經(jīng)過點的弦的長度為整數(shù),則該弦的長度可能為(

)A.4 B.6 C.8 D.104、如圖,在⊙O中,AB是⊙O的直徑,點D是⊙O上一點,點C是弧AD的中點,弦CE⊥AB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.則下列結(jié)論中正確的是()A.∠BAD=∠ABC B.GP=GD C.點P是△ACQ的外心 D.AP?AD=CQ?CB5、下列命題中,不正確的是(

)A.三點可確定一個圓B.三角形的外心是三角形三邊中線的交點C.一個三角形有且只有一個外接圓D.三角形的外心必在三角形的內(nèi)部或外部6、如圖,在△ABC中,點P為AB上一點,給出下列四個條件中能滿足△APC和△ACB相似的條件是(

)A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AB·CP=AP·CB7、△ABC和△A′B′C′符合下列條件,其中使△ABC和△A′B′C′相似的是(

)A.∠A=∠A′=45°,∠B=26°,∠B′=109°B.AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3C.∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3D.AB=3,AC=5,BC=7,A′B′=,A′C′=,B′C′=第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點A,B.小宇同學(xué)利用以下步驟作圖:①以點A為圓心,適當(dāng)長為半徑作弧交射線AN于點C,交線段AB于點D;②以點C為圓心,適當(dāng)長為半徑畫??;然后再以點D為圓心,同樣長為半徑畫?。昂髢苫≡凇螻AB內(nèi)交于點E;③作射線AE,交PQ于點F;若AF=2,∠FAN=30°,則線段BF的長為_____.2、若函數(shù)圖像與x軸的兩個交點坐標(biāo)為和,則__________.3、已知=,則=________.4、如圖,已知P是函數(shù)y1圖象上的動點,當(dāng)點P在x軸上方時,作PH⊥x軸于點H,連接PO.小華用幾何畫板軟件對PO,PH的數(shù)量關(guān)系進(jìn)行了探討,發(fā)現(xiàn)PO﹣PH是個定值,則這個定值為_____.5、制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴(kuò)大為原來的3倍,那么擴(kuò)大后長方形廣告牌的成本是_____元.6、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,則GD=_______cm.7、如圖,平行四邊形ABCD中,,點的坐標(biāo)是,以點為頂點的拋物線經(jīng)過軸上的點A,B,則此拋物線的解析式為__________________.四、解答題(6小題,每小題10分,共計60分)1、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點A,過A點作x軸的垂線,垂足為B,當(dāng)△OAB的面積為4時,求m的值.2、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設(shè)點M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應(yīng)點F恰好落在y軸上時,請直接寫出點P的坐標(biāo).3、(1)方法導(dǎo)引:問題:如圖1,等邊三角形的邊長為6,點是和的角平分線交點,,繞點任意旋轉(zhuǎn),分別交的兩邊于,兩點.求四邊形面積.討論:①小明:在旋轉(zhuǎn)過程中,當(dāng)經(jīng)過點時,一定經(jīng)過點.②小穎:小明的分析有道理,這樣我們就可以利用“”證出.③小飛:因為,所以只要算出的面積就得出了四邊形的面積.老師:同學(xué)們的思路很清晰,也很正確.在分析和解決問題時,我們經(jīng)常會借用特例作輔助線來解決一般問題:請你按照討論的思路,直接寫出四邊形的面積:________.(2)應(yīng)用方法:①特例:如圖2,的頂點在等邊三角形的邊上,,,邊于點,于點,求的面積.②探究:如圖3,已知,頂點在等邊三角形的邊上,,,記的面積為,的面積為,求的值.③應(yīng)用:如圖4,已知,頂點在等邊三角形的邊的延長線上,,,記的面積為,的面積為,請直接寫出與的關(guān)系式.

4、如圖,Rt△ABO的頂點A是反比例函數(shù)的圖象與一次函數(shù)的圖象在第二象限的交點,AB⊥x軸于點B,且.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求一次函數(shù)與反比例函數(shù)圖象的兩個交點A,C的坐標(biāo).5、如圖1,某同學(xué)家的一面窗戶上安裝有遮陽篷,圖2和圖3是截面示意圖,CD是遮陽篷,窗戶AB為1.5米,BC為0.5米.該遮陽篷有伸縮功能.如圖2,該同學(xué)在夏季某日的正午時刻測得太陽光和水平線的夾角為60°,遮陽篷CD正好將進(jìn)入窗戶AB的陽光擋?。蝗鐖D3,該同學(xué)在冬季某日的正午時刻測得太陽光和水平線的夾角為30°,將遮陽篷收縮成CD′時,遮陽篷正好完全不擋進(jìn)入窗戶AB的陽光.(1)計算圖3中CD′的長度比圖2中CD的長度收縮了多少米;(結(jié)果保留根號)(2)如果圖3中遮陽篷的長度為圖2中CD的長度,請計算該遮陽篷落在窗戶AB上的陰影長度為多少米?(請在圖3中畫圖并標(biāo)出相應(yīng)字母,然后再計算)6、某化工材料經(jīng)售公司購進(jìn)了一種化工原料,進(jìn)貨價格為每千克30元.物價部門規(guī)定其銷售單價不得高于每千克70元,也不得低于30元.市場調(diào)查發(fā)現(xiàn):單價每千克70元時日均銷售;單價每千克降低一元,日均多售.在銷售過程中,每天還要支出其他費用500元(天數(shù)不足一天時,按一天計算).(1)如果日均獲利1950元,求銷售單價;(2)銷售單價為多少時,可獲得最大利潤?最大利潤為多少.-參考答案-一、單選題1、D【解析】【分析】直接根據(jù)“左加右減,上加下減”的原則進(jìn)行解答即可.【詳解】由“左加右減”的原則可知,拋物線y=2x2向右平移2個單位所得拋物線是y=2(x?2)2;由“上加下減”的原則可知,拋物線y=2(x?2)2向下平移1個單位所得拋物線是y=2(x?2)2?1.故選D.【考點】本題考查了二次函數(shù)圖象與幾何變換,解題的關(guān)鍵是掌握二次函數(shù)圖象與幾何變換.2、C【解析】【分析】過A作,連接OC、OE,根據(jù)點A與點B關(guān)于原點對稱,∠ACB=90°,AC平分∠BAD得出,從而得出三角形AEC的面積與三角形AOE的面積相等,設(shè),根據(jù)E是AD的中點得出得出三角形OAE的面積等于四邊形AFGE的面積建立等量關(guān)系求解.【詳解】解:過A作,連接OC,連接OE:∵點A與點B關(guān)于原點對稱,∠ACB=90°∴又∵AC平分∠BAD∴∴∴設(shè),根據(jù)E是AD的中點得出:∴解得:故答案選:C.【考點】本題考查反比例函數(shù)與幾何綜合,有一定的難度.將三角形AEC的面積轉(zhuǎn)化與三角形AOE的面積相等是解題關(guān)鍵.3、A【解析】【分析】求出原拋物線的頂點坐標(biāo),再根據(jù)向左平移橫坐標(biāo)減,向上平移縱坐標(biāo)加求出平移后的拋物線的頂點坐標(biāo),然后利用頂點式解析式寫出即可.【詳解】解:∵拋物線的頂點坐標(biāo)為(2,1),∴向左平移1個單位,再向上平移2個單位后的頂點坐標(biāo)是(1,3)∴所得拋物線解析式是.故選:A.【考點】本題考查了二次函數(shù)圖象的平移,利用頂點的變化確定拋物線解析式的變化更簡便.4、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點的連線平分這個內(nèi)角.5、D【解析】【分析】由勾股定理可求AB的長,由銳角三角函數(shù)可得,即可求解.【詳解】解:設(shè)經(jīng)過t秒后,四邊形ADEF是菱形,∴AD=DE=t,DE∥AB,∴CD=(3-t)(cm),∠ABC=∠DEC,∵∠C=90°,AC=3cm,BC=4cm,∴(cm),∵sin∠DEC=sin∠ABC=,∴,∴,故選:D.【考點】本題考查了菱形的性質(zhì),勾股定理,銳角三角函數(shù)等知識,靈活運用這些性質(zhì)解決問題是本題的關(guān)鍵.6、C【解析】【分析】根據(jù)相似三角形的判定定理、正弦、余弦的概念解答.【詳解】三角形各邊長度都擴(kuò)大為原來的3倍,∴得到的三角形與原三角形相似,∴銳角A的大小不變,∴銳角A的正弦、余弦值不變,故選:C.【考點】三角形的形狀沒有改變,邊的比值沒有發(fā)生變化.二、多選題1、AC【解析】【分析】由a、b、c的關(guān)系可知,△ABC是直角三角形,然后根據(jù)銳角三角函數(shù)的定義求各角函數(shù)值.【詳解】解:由題意,∠A,∠B,∠C對邊分別為a,b,c,a=5,b=12,c=13,∴△ABC是直角三角形,∠C=90°.∴A、sinA=,該選項正確,符合題意;B、cosA=,該選項不正確,不符合題意;C、tanA=,該選項正確,符合題意;D、sinB=,該選項不正確,不符合題意;故選:AC.【考點】本題考查的是銳角三角函數(shù)的定義,銳角A的對邊a與斜邊c的比叫做∠A的正弦;銳角A的鄰邊b與斜邊c的比叫做∠A的余弦;銳角A的對邊a與鄰邊b的比叫做∠A的正切.2、BD【解析】【分析】根據(jù)正比例函數(shù)圖象和一次函數(shù)圖象可得,,然后分兩種情況討論:當(dāng)時,;當(dāng)時,,即可求解.【詳解】解:根據(jù)題題得:當(dāng)x=-1時,正比例函數(shù)與一次函數(shù)的圖象相交,∴,,即,當(dāng)時,,對于二次函數(shù),當(dāng)x=-1時,,即,且,故B選項正確;當(dāng)時,,對于二次函數(shù),當(dāng)x=1時,,即,且,故D選項正確;故選:BD【考點】本題主要考查了一次函數(shù)的圖象和性質(zhì),二次函數(shù)的圖象和性質(zhì),熟練掌握一次函數(shù)的圖象和性質(zhì),二次函數(shù)的圖象和性質(zhì),利用分類討論思想解答是解題的關(guān)鍵.3、CD【解析】【分析】過P作弦AB⊥OP,連接OA,根據(jù)垂徑定理求出AP=BP,根據(jù)勾股定理求出AP,再求出AB,再得出答案即可.【詳解】解:過P作弦AB⊥OP,連接OA,如圖,∵OA=5,OP=3,∴,∵OP⊥AB,OP過圓心O,∴AP=BP=4,即AB=4+4=8,∴過P點長度為整數(shù)的弦有4條,①過P點最短的弦的長度是8,②過P點最長的弦的長度是10,③還有兩條弦,長度是9,故答案為:CD.【考點】本題考查了勾股定理和垂徑定理,能熟記垂徑定理是解此題的關(guān)鍵.4、BCD【解析】【分析】A錯誤,假設(shè)成立,推出矛盾即可;B正確.想辦法證明即可;C正確.想辦法證明即可;D正確.證明,可得,證明,可得,證明,可得,由此即可解決問題;【詳解】解:A錯誤,假設(shè),則,,,顯然不可能,故A錯誤.B正確.連接.是切線,,,,,,,,,故B正確.C正確.,,,,,,是直徑,,,,,,,點是的外心.故C正確.D正確.連接.,,,,,,,,可得,,,,可得,.故D正確,故選:BCD.【考點】本題考查相似三角形的判定和性質(zhì)、垂徑定理、圓周角定理、切線的性質(zhì)等知識,解題的關(guān)鍵是正確現(xiàn)在在相似三角形解決問題,屬于中考選擇題中的壓軸題.5、ABD【解析】【分析】根據(jù)圓的性質(zhì)定理逐項排查即可.【詳解】解:A.不在同一條直線上的三點確定一個圓,故本選項錯誤;B.三角形的外心是三角形三邊垂直平分線的交點,所以本選項是錯誤;C.三角形的外接圓是三條垂直平分線的交點,有且只有一個交點,所以任意三角形一定有一個外接圓,并且只有一個外接圓,所以本選項是正確的;D.直角三角形的外心在斜邊中點處,故本選項錯誤.故選:ABD.【考點】考查確定圓的條件以及三角形外接圓的知識,掌握三角形的外接圓是三條垂直平分線的交點是解題的關(guān)鍵.6、ABC【解析】【分析】根據(jù)相似三角形的判定定理逐項判斷即可.【詳解】解:A、∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,故選項A符合題意;B、∵∠APC=∠ACB,∠A=∠A,∴△APC∽△ACB,故選項B符合題意;C、∵AC2=AP·AB,∠A=∠A,∴△APC∽△ACB,故選項C符合題意;D、AB·CP=AP·CB不是兩個對應(yīng)邊成比例,不能證明△APC和△ACB相似,故選項D不符合條件,故選:ABC.【考點】本題考查相似三角形的判定,熟練掌握相似三角形的判定方法是解答的關(guān)鍵.7、ABC【解析】【分析】根據(jù)三角形相似的判定定理逐項排查即可.【詳解】解:A:∵∠A=∠A′=45°,∠B=26°,∠B′=109°,∴∠C=109°,∠C′=26°,∴∠B=∠C,∴△ABC∽△A′C′B′,B:∵AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3,∴,∴△ABC∽△C′A′B′;C:∵∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3,∴AB:B′C′=AC:A′B′=2:3,∴△ABC∽△B′C′A′;D:∵AB=3,AC=5,BC=7,A′B′=,A′C′=

B′C′=,∴,∴不相似.故選ABC.【考點】本題主要考查了相似三角形的判定,相似三角形的判定方法主要有:①有兩個對應(yīng)角相等的三角形相似;②有兩個對應(yīng)邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應(yīng)邊的比相等,則兩個三角形相似.三、填空題1、2【解析】【分析】過B作BG⊥AF于G,依據(jù)AB=BF,運用等腰三角形的性質(zhì),即可得出GF的長,進(jìn)而得到BF的長.【詳解】解:如圖,過B作BG⊥AF于G,∵M(jìn)N∥PQ,∴∠FAN=∠3=30°,由題意得:AF平分∠NAB,∴∠1=∠2=30°,∴∠1=∠3=30°,∴AB=BF,又∵BG⊥AF,∴AG=GF=AF=,∴Rt△BFG中,BF=,故答案為:2.【考點】本題考查了平行線的性質(zhì)、角平分線的基本作圖、直角三角形30度角的性質(zhì),熟練掌握平行線和角平分線的基本作圖是關(guān)鍵.2、-2【解析】【分析】根據(jù)二次函數(shù)圖象對稱軸所在的直線與x軸的交點的坐標(biāo),即為它的圖象與x軸兩交點之間線段中點的橫坐標(biāo),即可求得.【詳解】解:函數(shù)圖像與x軸的兩個交點坐標(biāo)為和由對稱軸所在的直線為:解得故答案為:-2.【考點】本題考查了二次函數(shù)的性質(zhì)及中點坐標(biāo)的求法,熟練掌握和運用二次函數(shù)的性質(zhì)及中點坐標(biāo)的求法是解決本題的關(guān)鍵.3、【解析】【分析】利用比例的性質(zhì)進(jìn)行變形,然后代入代數(shù)式中合并約分即可.【詳解】解:∵,∴,則.故答案為:.【考點】本題考查比例問題,關(guān)鍵掌握比例的性質(zhì),會利用性質(zhì)把比例式進(jìn)行恒等變形,會根據(jù)需要選擇靈活的比例式解決問題.4、2【解析】【分析】設(shè)p(x,x2-1),則OH=|x|,PH=|x2-1|,因點P在x軸上方,所以x2-1>0,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案.【詳解】解:設(shè)p(x,x2-1),則OH=|x|,PH=|x2-1|,當(dāng)點P在x軸上方時,∴x2-1>0,∴PH=|x2-1|=x2-1,在Rt△OHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,∴OP=x2+1,∴OP-PH=(x2+1)-(x2-1)=2,故答案為:2.【考點】本題考查二次函數(shù)圖象上點的坐標(biāo)特征,勾股定理,利用坐標(biāo)求線段長度是解題的關(guān)鍵.5、1080【解析】【分析】直接利用相似多邊形的性質(zhì)進(jìn)而得出答案.【詳解】∵將此廣告牌的四邊都擴(kuò)大為原來的3倍,∴面積擴(kuò)大為原來的9倍,∴擴(kuò)大后長方形廣告牌的成本為:120×9=1080(元).故答案為:1080.【考點】此題考查相似多邊形的性質(zhì),相似多邊形的面積的比等于相似比的平方.6、4.5【解析】【分析】由三角形的重心的性質(zhì)即可得出答案.【詳解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中線,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案為:4.5.【考點】本題考查了三角形的重心,三角形三條中線的交點叫做三角形的重心,三角形的重心到一個頂點的距離等于它到對邊中點距離的兩倍.7、【解析】【分析】根據(jù)平行四邊形的性質(zhì)得到CD=AB=4,即C點坐標(biāo)為,進(jìn)而得到A點坐標(biāo)為,B點坐標(biāo)為,利用待定系數(shù)法即可求得函數(shù)解析式.【詳解】∵四邊形ABCD為平行四邊形∴CD=AB=4∴C點坐標(biāo)為∴A點坐標(biāo)為,B點坐標(biāo)為設(shè)函數(shù)解析式為,代入C點坐標(biāo)有解得∴函數(shù)解析式為,即故答案為.【考點】本題考查了平行四邊形的性質(zhì),和待定系數(shù)法求二次函數(shù)解析式,問題的關(guān)鍵是求出A點或B點的坐標(biāo).四、解答題1、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函數(shù)圖象位于第一象限得到m﹣5大于0,即可求出m的范圍;(2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出(m﹣5)=4,解得即可.【詳解】解:(1)∵這個反比例函數(shù)的圖象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面積為4,∴(m﹣5)=4,∴m=13.【考點】此題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)的圖象與性質(zhì),根據(jù)系數(shù)k的幾何意義得出(m?5)=4是解題的關(guān)鍵.2、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時,S有最大值,最大值為;(3)存在,點P的坐標(biāo)為(4,0)或(,0).【解析】【分析】(1)將點E代入直線解析式中,可求出點C的坐標(biāo),將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標(biāo),設(shè)直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點P的坐標(biāo),則點G的坐標(biāo)可表示,點H的坐標(biāo)可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時,S有最大值,最大值為.(3)存在,如圖所示,設(shè)點P的坐標(biāo)為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應(yīng)點為點F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當(dāng)t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標(biāo)為(4,0)或(,0).【考點】此題考查了待定系數(shù)法求函數(shù)解析式,點坐標(biāo)轉(zhuǎn)換為線段長度,幾何圖形與二次函數(shù)結(jié)合的問題,最后一問推出CG=HG為解題關(guān)鍵.3、(1);(2)①的面積;②xy=12;③.【解析】【分析】(1)連接、,利用ASA證出,從而得出的面積與四邊形的面積相等,過點作于點,利用銳角三角函數(shù)求出OH即可求出△OBC的面積,從而得出結(jié)論;(2)①根據(jù)等邊三角形的性質(zhì)可得,從而求出∠BOD,然后根據(jù)30°所對的直角邊是斜邊的一半和勾股定理即可求出OD和BD,從而求出結(jié)論;②過點作于,于,根據(jù)相似三角形判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,然后根據(jù)三角形的面積公式即可求出結(jié)論;③過點作交的延長線于,于,根據(jù)相似三角形的判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,分別求出OM和ON,再結(jié)合三角形的面積公式即可求出結(jié)論.【詳解】解:(1)連接、∵是等邊三角形,∴∵是和的角平分線交點∴∴,∴∴∴的面積與四邊形的面積相等過點作于點∵,∴∵,∴,∴∴四邊形的面積為.故答案為:.(2)①∵是等邊三角形,∴∵于點,∴∵,∴,,∴的面積②過點作于,于.由①得:,同理:∵是等邊三角形,∴∵,∴∴,∴∴,∴∴③過點作交的延長線于,于.∵,∴∴,∵∴,∴∴∵,,∴,∴∵,,∴,∴∴【考點】此題考查的是全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù),掌握全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù)是解決此題的關(guān)鍵.4、(1),;(2)A(-1,6),C(6,-1).【解析】【分析】(1)先根據(jù)反比例函數(shù)的圖象所在的象限判斷出k的符號,在由△ABO的面積求出k的值,進(jìn)而可得出兩個函數(shù)的解析式;(2)把兩函數(shù)的解析式組成方程組,求出x、y的值,即可得出A、C兩點的坐標(biāo).【詳解】(1)∵AB⊥x軸于點B,且,∴,∴.∵反比例函數(shù)圖象在第二、四象限,∴,∴,∴反比例函數(shù)的解析式為,一次函數(shù)的解析式為;(2)由,解得,或,∴A(-1,6),C(6,-1).【考點】本題考查了反比例函數(shù)比例系數(shù)k的幾何意義及應(yīng)用,反比例函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論