




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東廣州市廣大附中7年級數(shù)學下冊第四章三角形專項測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、在下列長度的各組線段中,能組成三角形的是()A.2,4,7 B.1,4,9 C.3,4,5 D.5,6,122、以下列各組線段為邊,能組成三角形的是()A.3cm,3cm,6cm B.2cm,5cm,8cmC.25cm,24cm,7cm D.1cm,2cm,3cm3、如圖,在和中,,,,,連接,交于點,連接.下列結論:①;②;③平分;④平分.其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個4、以長為15cm,12cm,8cm、5cm的四條線段中的三條線段為邊,可以畫出三角形的個數(shù)是()A.1個 B.2個 C.3個 D.4個5、如圖,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列條件中的一個仍無法證明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE6、如圖,在△ABC與△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB交EF于點D,連接EB.下列結論:①∠FAC=40°;②AF=AC;③∠EFB=40°;④AD=AC,正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個7、三角形的外角和是()A.60° B.90° C.180° D.360°8、一個三角形的兩邊長分別是3和5,則它的第三邊可能為()A.2 B.4 C.8 D.119、如圖,AB∥CD,∠E+∠F=85°,則∠A+∠C=()A.85° B.105°C.115° D.95°10、以下列長度的三條線段為邊,能組成三角形的是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,,,,點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動.它們運動的時間為設點的運動速度為,若使得與全等,則的值為______.2、我們將一副三角尺按如圖所示的位置擺放,則_______°.3、如圖,在ABC中,已知點D,E,F(xiàn)分別為邊BC,AD,CE的中點,且ABC的面積等于24cm2,則陰影部分圖形面積等于_____cm24、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.5、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按圖中所示位置擺放,點D在邊AB上,EFBC,則∠ADF的度數(shù)為_____度.6、如圖,中,已知點D、E、F分別為BC、AD、CE的中點,設的面積為,的面積為,則______.7、如圖,在△ABC中,AD是BC邊上的中線,BE是△ABD中AD邊上的中線,若△ABC的面積是80,則△ABE的面積是________.8、已知a,b,c是的三條邊長,化簡的結果為_______.9、如圖,在△ABC中,AD平分∠CAB,BD⊥AD,已知△ADC的面積為14,△ABD的面積為10,則△ABC的面積為______.10、如圖,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一個條件是____.三、解答題(6小題,每小題10分,共計60分)1、如圖,小明站在堤岸的A點處,正對他的S點停有一艘游艇.他想知道這艘游艇距離他有多遠,于是他沿堤岸走到電線桿B旁,接著再往前走相同的距離,到達C點.然后他向左直行,當看到電線桿與游艇在一條直線上時停下來,此時他位于D點.小明測得C,D間的距離為90m,求在A點處小明與游艇的距離.2、如圖,四邊形中,,,于點.(1)如圖1,求證:;(2)如圖2,延長交的延長線于點,點在上,連接,且,求證:;(3)如圖3,在(2)的條件下,點在的延長線上,連接,交于點,連接,且,當,時,求的長.3、如圖,BM、CN都是?ABC的高,且BP﹦AC,CQ﹦AB,請?zhí)骄緼P與AQ的數(shù)量關系,并說明理由.4、如圖,CE⊥AB于點E,BF⊥AC于點F,BD=CD.(1)求證:△BDE≌△CDF;(2)求證:AE=AF.5、將一副三角板中的兩塊直角三角尺的直角頂點C按如圖1方式疊放在一起,其中,.(1)若,則的度數(shù)為_______;(2)直接寫出與的數(shù)量關系:_________;(3)直接寫出與的數(shù)量關系:__________;(4)如圖2,當且點E在直線的上方時,將三角尺固定不動,改變三角尺的位置,但始終保持兩個三角尺的頂點C重合,這兩塊三角尺是否存在一組邊互相平行?請直接寫出角度所有可能的值___________.6、如圖,在中,,,點D是內一點,連接CD,過點C作且,連接AD,BE.求證:.-參考答案-一、單選題1、C【分析】根據(jù)三角形三邊關系定理:三角形兩邊之和大于第三邊,進行判定即可.【詳解】解:A、∵,∴不能構成三角形;B、∵,∴不能構成三角形;C、∵,∴能構成三角形;D、∵,∴不能構成三角形.故選:C.【點睛】本題主要考查運用三角形三邊關系判定三條線段能否構成三角形的情況,理解構成三角形的三邊關系是解題關鍵.2、C【分析】根據(jù)三角形三邊關系求解即可.【詳解】解:A、∵,∴3cm,3cm,6cm不能組成三角形,故選項錯誤,不符合題意;B、∵,∴2cm,5cm,8cm不能組成三角形,故選項錯誤,不符合題意;C、∵,∴25cm,24cm,7cm能組成三角形,故選項正確,符合題意;D、∵,∴1cm,2cm,3cm不能組成三角形,故選項錯誤,不符合題意.故選:C.【點睛】此題考查了三角形三邊關系,解題的關鍵是熟練掌握三角形三邊關系.三角形兩邊之和大于第三邊,兩邊之差小于第三邊.3、C【分析】由全等三角形的判定及性質對每個結論推理論證即可.【詳解】∵∴∴又∵,∴∴故①正確∵∴由三角形外角的性質有則故②正確作于,于,如圖所示:則°,在和中,,∴,∴,在和中,∴,∴∴平分故④正確假設平分則∵∴即由④知又∵為對頂角∴∴∴∴在和中,∴即AB=AC又∵故假設不符,故不平分故③錯誤.綜上所述①②④正確,共有3個正確.故選:C.【點睛】本題考查了全等三角形的判定及性質,靈活的選擇全等三角形的判定的方法是解題的關鍵,從判定兩個三角形全等的方法可知,要判定兩個三角形全等,需要知道這兩個三角形分別有三個元素(其中至少一個元素是邊)對應相等,這樣就可以利用題目中的已知邊角迅速、準確地確定要補充的邊角,有目的地完善三角形全等的條件,從而得到判定兩個三角形全等的思路.4、C【分析】從4條線段里任取3條線段組合,可有4種情況,看哪種情況不符合三角形三邊關系,舍去即可.【詳解】解:首先可以組合為15cm,12cm,8cm;15cm,12cm,5cm;15cm,8cm、5cm;12cm,8cm、5cm.再根據(jù)三角形的三邊關系,發(fā)現(xiàn)其中的12cm,8cm、5cm不符合,則可以畫出的三角形有3個.故選:C.【點睛】本題考查了三角形的三邊關系:即任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.這里一定要首先把所有的情況組合后,再看是否符合三角形的三邊關系.5、A【分析】根據(jù)AF=DC求出AC=DF,再根據(jù)全等三角形的判定定理逐個判斷即可.【詳解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本選項符合題意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本選項不符合題意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本選項不符合題意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本選項不符合題意;故選:A.【點睛】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.6、C【分析】由“SAS”可證△ABC≌△AEF,由全等三角形的性質依次判斷可求解.【詳解】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正確,∴∠BAE=∠FAC=40°,故①正確,∵∠AFB=∠C+∠FAC=∠AFE+∠EFB,∴∠EFB=∠FAC=40°,故③正確,無法證明AD=AC,故④錯誤,故選:C.【點睛】本題考查全等三角形的判定與性質,是重要考點,掌握相關知識是解題關鍵.7、D【分析】根據(jù)三角形的內角和定理、鄰補角的性質即可得.【詳解】解:如圖,,,又,,即三角形的外角和是,故選:D.【點睛】本題考查了三角形的內角和定理、鄰補角的性質,熟練掌握三角形的內角和定理是解題關鍵.8、B【分析】根據(jù)三角形的三邊關系定理:三角形兩邊之和大于第三邊,三角形的兩邊之差小于第三邊,設第三邊為,可得,再解即可.【詳解】設第三邊為,由題意得:,.故選:B.【點睛】此題主要考查了三角形的三邊關系:掌握第三邊大于已知的兩邊的差,而小于兩邊的和是解題的關鍵.9、D【分析】設交于點,過點作,根據(jù)平行線的性質可得,根據(jù)三角形的外角性質可得,進而即可求得【詳解】解:設交于點,過點作,如圖,∵∴∠E+∠F=85°故選D【點睛】本題考查了平行線的性質,三角形的外角性質,平角的定義,掌握三角形的外角性質是解題的關鍵.10、D【分析】根據(jù)三角形的三邊關系,即可求解.【詳解】解:A、因為,所以不能構成三角形,故本選項不符合題意;B、因為,所以不能構成三角形,故本選項不符合題意;C、因為,所以不能構成三角形,故本選項不符合題意;D、因為,所以能構成三角形,故本選項符合題意;故選:D【點睛】本題主要考查了三角形的三邊關系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關鍵.二、填空題1、或【分析】分兩種情形:①當≌時,可得:;②當≌時,,根據(jù)全等三角形的性質分別求解即可.【詳解】解:①當≌時,可得:,運動時間相同,,的運動速度也相同,;②當≌時,,,,,故答案為:或.【點睛】本題考查全等三角形的性質,路程、速度、時間之間的關系等知識,解題的關鍵是理解題意,靈活運用所學知識進行分類解決問題.2、45【分析】利用三角形的外角性質分別求得∠α和∠β的值,代入求解即可.【詳解】解:根據(jù)題意,∠A=60°,∠C=30°,∠D=∠DBG=45°,∠ABC=∠DGB=∠DGC=90°,∴∠β=∠DBG+∠C=75°,∠α=∠DGC+∠C=120°,∴∠α?∠β=120°-75°=45°,故答案為:45.【點睛】本題考查了三角形的外角性質,解答本題的關鍵是明確題意,找到三角板中隱含的角的度數(shù),利用數(shù)形結合的思想解答.3、6【分析】因為點F是CE的中點,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分別是BC、AD的中點,可得△EBC的面積是△ABC面積的一半;利用三角形的等積變換可解答.【詳解】解:如圖,點F是CE的中點,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中點,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即陰影部分的面積為6cm2.故答案為6.【點睛】本題考查了三角形面積的等積變換:若兩個三角形的高(或底)相等,面積之比等于底邊(高)之比.4、【分析】連接CP.設△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.5、75【分析】設CB與ED交點為G,依據(jù)平行線的性質,即可得到∠CGD的度數(shù),再根據(jù)三角形外角的性質,得到∠BDE的度數(shù),即可得∠ADF的度數(shù).【詳解】如圖所示,設CB與ED交點為G,∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,∵EF∥BC,∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE,∴∠BDE=45°-30°=15°,∴∠ADF=180°-90°-∠BDE=75°故答案為:75.【點睛】本題主要考查了平行線的性質以及三角形外角性質,解題時注意:兩條平行線被第三條直線所截,同位角相等.6、4【分析】利用三角形的中線的性質證明再證明從而可得答案.【詳解】解:點F為CE的中點,點E為AD的中點,故答案為:【點睛】本題考查的是與三角形的中線有關的面積的計算,掌握“三角形的中線把一個三角形的面積分為相等的兩部分”是解本題的關鍵.7、20【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可解答.【詳解】解:∵AD是BC上的中線,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD邊上的中線,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面積是80,∴S△ABE=×80=20.故答案為:20.【點睛】本題主要考查了三角形面積的求法,掌握三角形的中線將三角形分成面積相等的兩部分,是解答本題的關鍵.8、2b【分析】由題意根據(jù)三角形三邊關系得到a+b-c>0,b-a-c<0,再去絕對值,合并同類項即可求解.【詳解】解:∵a,b,c是的三條邊長,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案為:2b.【點睛】本題考查的是三角形的三邊關系以及去絕對值和整式加減運算,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關鍵.9、28【分析】延長BD交AC于點E,可得△ABD≌△AED,則△ABD與△AED的面積相等,點D是BE的中點,從而△CED與△CBD的面積相等,且可求得△CED的面積,進而求得結果.【詳解】延長BD交AC于點E,如圖所示∵BD⊥AD∴∠ADB=∠ADE=90°∵AD平分∠CAB∴∠BAD=∠CAD∵AD=AD∴△ABD≌△AED(ASA)∴△ABD與△AED的面積相等,BD=ED∴點D是BE的中點∴△CED與△CBD的面積相等,且△CED的面積等于△ADC的面積與△ABD的面積的差,即為14-10=4∴△CBD的面積為4∴△ABC的面積=14+10+4=28故答案為:28【點睛】本題考查了全等三角形的判定與性質,三角形一邊上的中線平分此三角形的面積等知識,關鍵是構造輔助線并證明△ABD≌△AED.10、AB=AD(答案不唯一)【分析】根據(jù)SAS即可證明△ABC≌△ADC.【詳解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案為:AB=AD(答案不唯一).【點睛】此題主要考查全等三角形的判定,解題的關鍵是熟知全等三角形的判定定理.三、解答題1、在A點處小明與游艇的距離為90m.【分析】根據(jù)全等三角形的判定和性質即可得到結論.【詳解】解:在與中,,答:在A點處小明與游艇的距離為90m.【點睛】本題考查的是全等三角形在實際生活中的運用,能根據(jù)題意證明△ABS≌△CBD是解答此題的關鍵.2、(1)見解析;(2)見解析;(3)2【分析】(1)過點B作于點Q,根據(jù)AAS證明△得,再證明四邊形是矩形得BQ=CG,從而得出結論;(2)在GF上截取GH=GE,連接AH,證明AH=FH,GE=GH即可;(3)過點A作于點P,在FC上截取,連接,證明得,可證明AC是EH的垂直平分線,再證明和△得可求出,從而可得結論.【詳解】解:(1)證明:過點B作于點Q,如圖1∵又,∴△∴四邊形是矩形;(2)在GF上截取GH=GE,連接AH,如圖2,又(3)過點A作于點P,在FC上截取,連接,如圖3,由(1)、(2)知,,∵∴∵∴∴∴∠∵∴∠∴∵∴∠∴∴AC是EH的垂直平分線,∴∴又∵∴∴∠∴∠∵∠,∴∠∴∵∴∴∵∠∴,即∴∵,即∴在和中,AH=AM∠HAB=∠MAD∴△∴∴∴∴【點睛】本題考查的是全等三角形的判定和性質,掌握全等三角形的判定定理和性質定理是解題的關鍵.3、AP=AQ,理由見詳解【分析】由題意易得∠BNP=∠CMP=90°,則有∠ABP+∠BPN=∠QCA+∠MPC=90°,然后可得∠ABP=∠QCA,進而可證△ABP≌△QCA,最后問題可求解.【詳解】解:AP=AQ,理由如下:∵BM、CN都是?ABC的高,∴∠BNP=∠CMP=90°,∴∠ABP+∠BPN=∠QCA+∠MPC=90°,∵∠BPN=∠MPC,∴∠ABP=∠QCA,在△ABP和△QCA中,,∴△ABP≌△QCA(SAS),∴AP=AQ.【點睛】本題主要考查三角形的高線、直角三角形的性質及全等三角形的性質與判定,熟練掌握三角形的高線、直角三角形的性質及全等三角形的性質與判
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025服裝店員工勞動合同協(xié)議書
- 2025貸款擔保抵押合同
- 農(nóng)村代理記賬合同范本
- 怎么寫贈與合同范本
- 承包綠化勞務合同范本
- 從+“心”+出發(fā)遇見更好的自己-開學第一課暨心理健康教育主題班會-2025-2026學年高中主題班會
- 合作沙場合同范本
- 托管機構合伙合同范本
- 施工經(jīng)理聘用合同范本
- 債務劃清責任合同范本
- 棗莊學院《圖學基礎與計算機繪圖》2024-2025學年第一學期期末試卷
- GB 46031-2025可燃粉塵工藝系統(tǒng)防爆技術規(guī)范
- 養(yǎng)老護理員培訓班課件
- 2025-2030城市礦產(chǎn)開發(fā)利用政策支持與商業(yè)模式創(chuàng)新報告
- 產(chǎn)品線庫存管理與補貨預測系統(tǒng)
- 2025年高考(山東卷)歷史真題及答案
- 醫(yī)學減重管理體系
- 初中歷史教師培訓講座
- 2025年新營運損失費賠償協(xié)議書
- 手術部運用PDCA循環(huán)提高手術室術后設備器材定位歸還率品管圈
- 傳統(tǒng)喪事流程安排方案
評論
0/150
提交評論