




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
NationalInstituteUKEconomicOutlook-Summer2025
BoxA:NewEvidenceonNowcastingMonthlyUKGDP
ByPaulaBejaranoCarbo,RoryMacqueenandEfthymiosXylangouras
TheOfficeforNationalStatistics(ONS)publishesamonthlyestimateofgrossdomesticproduct(GDP)atalagofaround40daysfromtheendofthemonth,reflectingthetimeittakestocollatedataoneconomicoutput.Atthesametime,policymakersandbusinesseshaveaninterestinknowinghowtheUKeconomyisperformingasquicklyaspossible,especiallyduringtimesofcrisis.Asaresult,nowcastingorforecastinginrealtimeGDPasaccuratelyaspossibleishighlyimportant.
Since2018,NIESRhasproduceditsmonthlyGDPtrackerontheONSGDPestimatereleasedate,commentingonthelatestdatapointandproducingabottom-upforecast(i.e.constructedbyaggregatingsectoralforecasts)ofeconomicoutputuptotheendofthenextquarter(Karaetal.,2018).InBejaranoCarboetal.(2025),wedevelopthisfurther,inlightofnewdataseriesavailablesincethepandemic,andtheincreasingdemandfortimelysectoralnowcasts.
ThisarticleprovidesanoverviewofthemethodologyandresultsinBejaranoCarboetal.(2025).Weusealargedatasetofpublic-andprivate-sectorvariables,includingnewlyavailablerealtimeindicators,asinputsto28nowcastingmodels.Eachofthesemodelsisestimatedfor20industrialsectorstogeneratesectoralGVAnowcasts,whicharethenaggregatedtoproduceanowcastforoverallGDP.Wethenapplyempiricalalgorithmstocombinethesectoralnowcasts,hopingtogeneratebetterGDPnowcastsbyputtingmoreweightonnowcastsfrommodelswhichhavebeenmoreaccuratepreviously.Byanalysinghowthedifferentmodelsandmodelcombinationalgorithmsperformoveroursampleof57monthscoveringbefore,duringandaftertheCovid-19shock,weprovidenewevidenceonnowcastingUKGDP.
Data
Ourforecastvariableofinterestisthemonth-on-monthgrowthrateofUKgrossvalueadded(GVA).Ournowcastisconstructedindirectlyfromthebottomup,bynowcastingmonth-on-monthgrowthratesforeachofthetwentyconstituentindustrialsectorsofGVA(e.g.agriculture,construction,manufacturing,wholesaleandretailtrade,etc.).Intwentyindependentnowcasts,therefore,thetargetvariableisthemonthlygrowthrateofactivityinthesectorinquestion.
Weproduceone-month-aheadpseudo-out-of-samplenowcastsmeaningthatforeachofour57testperiodmonthsfromJune2019toMarch2024,wegenerateaforecastfortheupcomingpublicationmonthbasedondatawhichwouldhavebeenavailableonemonthbeforefirstrelease.Forexample,thefirstestimateofJanuary2024GDPwaspublishedon14March2024;ourpseudoout-of-samplenowcastisconditionalondataavailableby13February2024(afterthefirstestimateofDecember2023GDPwaspublished).
NationalInstituteofEconomicandSocialResearch1
NationalInstituteUKEconomicOutlook-Summer2025
2NationalInstituteofEconomicandSocialResearch
Thedatathatweconditionthesenowcastsonincludelaggedvaluesofthetargetvariablesaswellascontemporaneousandlaggedvaluesofawiderangeofexternalregressors.Thelatteraresourcedfrombothpublicandprivatesectorsources,andincludevariablesrelatedtobusinessandconsumerconfidence,prices,financialmarkets,trade,weather,labourmarkets,andCovid-specificindicators.
Models
Weestimateatotalof28statisticalmodels,describedindetailinBejaranoCarboetal.
(2025).
Foreachsector,weestimate:fourunivariatemodels,whichproducenowcastsbasedonlyonlaggedvaluesoftheforecastvariables;twolimited-informationmultivariatemodels,whichproducenowcastsbasedonlaggedvaluesoftheforecastvariablesandselectedexternalregressors,chosenbasedonourexperiencewiththeNIESRtrackerandinotherforecastingroles;andonefull-informationmodelmakinguseofourfulldataset(167variables).Foreachsector,eachofthesesevennowcastsismade,firstly,withouttreatmentofoutliersandthenwith,doublingthenumberofnowcaststo14.Wethenconsiderbothrecursiveestimation(inwhichallavailabledataisusedwhenestimatingmodelparameters)andarollingwindowestimationprocedure(inwhichonlythe36mostrecentmonthlyobservationsareused),doublingourtotalnumberofnowcastsgeneratedineachmonthforeachsectorto28.
Single-ModelResults
Weevaluatehowtheabove28modelsperformonceaggregatedacrossallsectorstoderiveasingle-modelGDPnowcast.
Fromthisexercise,wefindthatoutliertreatmentimprovesforecastaccuracy,asmeasuredbyRootMeanSquaredForecastError(RMSFE),significantlyduringtheCovidperiod(2020-2021)buthaslimitedeffectsinthepost-pandemicperiod(2022-2024).Amonguntreatedmodels,univariateapproachesperformpoorlyduringCovidcomparedtobigdataapproaches,butthesimplerunivariatemodelsareamongthebestinthepost-pandemicperiod.
Forecastperformancecanbeenhancedusingabottom-upapproachrelativetoatop-downapproachforasimpleunivariatemodel.Specifically,therecursivebottom-upARMA(1,1)withoutoutliertreatmentoutperformsorisequivalenttothebenchmarktop-downGVAARMA(1,1)inallsub-sampleperiods.
Thesameisnotalwaystrueforbigdataapproaches:atop-downDynamicLassowithPrincipalComponentAnalysis(PCA)beatsthebottom-upDynamicLassowithPCAoverallandinsub-samples.Infact,itisthebest-performingpurelystatisticalmodelwithoutoutliertreatmentduringtheCovid-19period.
Ultimately,noneofthesinglestatisticalmodelscanbeatthejudgment-augmentedNIESRnowcastsnortheONSfirstestimate,whenconsideredasforecastsofmaturedatavintages.
NationalInstituteUKEconomicOutlook-Summer2025
NowcastCombinationAlgorithms
Thereisnoreasontobelievethatthedifferentsectorsoftheeconomyfollowthesamedata-generatingprocessandthereforearebestpredictedbythesamesingle-modelapproach.Therefore,afterusingthesamemodellingtechniqueforeachsector,weconsidermodelselectionapproacheswhichoptimallycombineforecastsforeachsector.ThisisinthespiritoftheNIESRGDPtrackerapproach,inthatdifferentfunctionalformsarepermittedbetweensectors.
Conceptually,thisrepresentsabottom-upforecastfortotalGDPgrowth,whichwouldhavebeenmadebyaforecasteronemonthbeforethisperiodsfirstestimateispublished,lookingatallthepasterrorsforeachofthemodelsforeachsector,andweightingnowcastsforeachsectorbasedonthemodel(s)estimatedtohavebeenleastinaccurateinthepast.
Firstly,aCumulativeRMSFESelectionalgorithmcalculatestheRMSFEofeachofthe28nowcastingmodelsforeachsectoruptoandincludingthemostrecentperiodandthenselectsthemodelforeachsectorwhichhasthesmallestcumulativeRMSFE.Informationfromtheothermodelnowcastsisdiscardedasalltheweightisputonthebestpreviouslyperformingmodelforeachsector.
Secondly,theDynamicModelAveragingRMSFE(DMA-RMSFE)algorithmcombinesnowcastsbyplacinggreaterweightonnowcastsfrommodelswithasmallerRMSFE.Thus,allinformationfromallmodelsreceivessomeweightinthiscase.
ThefinalalgorithmDynamicModelAveragingMAE(DMA-MAE),isnearlyidenticaltothesecond,butusesthemeanaverageerror(MAE)asitsweightingcriterionratherthantheRMSFE,astheformerismorerobusttooutliers.
Results:AggregateGDPNowcasting,2019-2024
FigureA1graphstheone-step-aheadnowcastsformonth-on-monthGDPgrowthfromthethreecombinationalgorithms.AsidefromtheinitialCovid-19shock,aclearoutlier,itappearsthatanydifferencebetweenthealgorithmicapproachesisminor,indicatingthattheirnowcastsanderrorsarehighlycorrelated.
Thatsaid,westillobservethattheCumulativeRMSFESelectionalgorithmunderperformsothers(intermsofRMSFE)duringtheinitialCovid-19shockbutmarginallyoutperformstheweightingalgorithmsin2022-2024.Perhapsunsurprisingly,thealgorithmwhichusesMAEperformsbestinthepandemicperiod,whenitisoptimaltobelesssensitivetooutlierforecasterrors.
3
NationalInstituteofEconomicandSocialResearch
NationalInstituteUKEconomicOutlook-Summer2025
Percent
FigureA1One-stepaheadnowcastsformonthlyGDPgrowthJune2019-April2024(percent)
13
3
-7
ModelSelection-CumulativeRMSFE
ModelSelection-DMARMSFE
TableA1:
-17
ModelSelection-DMAMAE
Actual
-27
20192020202120222023
Source:Authors’calculations.
TablesA1-A3comparetheDMA-MAEalgorithmagainst3benchmarks–asimplerecursivetop-downARMA(1,1)model,theONSfirstestimateofGVA,andtheNIESRtrackerone-step-aheadforecast–andtheactualGDPdataoutturn.TableA1containsthiscomparisonforthewholesampleperiod,whiletablesA2andA3narrowresultsdowntotheCovidandpost-Covidsub-sampleperiods.
TableA1AccuracymetricsforGDPgrowthnowcasts2019-24
RMSFE
Bias
CumulativeRMSFE
DMARMSFE
DMAMAE
4.63
4.49
4.07
-0.34
-0.15
-0.06
InfeasibleBestModels
2.21
0.26
Top-downARMA
Top-downDynamicLassowithPCA
NIESRGDPTracker
FirstEstimate
6.78
4.81
1.57
0.64
-0.35
-0.04
0.11
-0.16
4
NationalInstituteofEconomicandSocialResearch
NationalInstituteUKEconomicOutlook-Summer2025
TableA2AccuracymetricsforGDPgrowthnowcasts2020-21
RMSFE
Bias
CumulativeRMSFE
7.10
-0.77
DMARMSFE
6.88
-0.33
DMAMAE
6.24
-0.10
InfeasibleBestModels
3.40
0.58
10.42
7.37
2.38
0.95
-0.80
-0.06
0.25
-0.42
Top-downARMA
Top-downDynamicLassowithPCANIESRGDPTracker
FirstEstimate
TableA3AccuracymetricsforGDPgrowthnowcasts2022-24
RMSFE
Bias
CumulativeRMSFE
0.59
-0.06
DMARMSFE
0.64
-0.03
DMAMAE
0.63
-0.03
InfeasibleBestModels
0.26
0.04
0.66
0.73
0.38
0.20
-0.03
-0.03
-0.01
0.01
Top-downARMA
Top-downDynamicLassowithPCANIESRGDPTracker
FirstEstimate
Duringthepandemicperiod,thebestnowcastscomefromthejudgement-augmentedNIESRmodel,highlightingthechallengeofforecastingusingpurelystatisticalmodelsduringtimesofextremeandunprecedentedeconomicvolatility.Thatsaid,theNIESRnowcastperformssignificantlyworsethanthestatisticalmodelsduringthefourthquarterof2020
whentheUKgovernmentre-imposedstringentCovidrestrictionsduetothespreadofanewCovidvariantpossiblyreflectingoverly-pessimistichumanjudgementassociatedwithreceiving(andexperiencing)thisnews.
Duringthepandemicsub-sample,thealgorithmicDMA-MAEmodelimprovessignificantlyonthetop-downARMA(1,1)approach.Indeed,acrossthefullsampleof57months,aswellastheseparateCovidandpost-Covidsub-samples,allthreebottom-upalgorithmsoutperformthetop-downARMA(1,1)andtop-downDynamicLassowithPCAbenchmarks.Further,whilenoneofthealgorithmscancompetewiththeNIESRjudgement-augmentedforecastintermsofRMSFE,theDMA-MAEalgorithmgavelessbiasednowcastsduringtheinitialpandemicperiodthanboththeONSsfirstestimateandtheNIESRnowcasts.
Thoughthesingle-modelapproacheswithoutliertreatmentperformbetterthanthecombinationnowcastsduringtheCovidperiod,thecombinationalgorithmsaregenerallynoworsethanthesinglemodelsinnormaltimes.
5
NationalInstituteofEconomicandSocialResearch
NationalInstituteUKEconomicOutlook-Summer2025
Finally,andpurelyasarobustnesscheck,wecreateaseriesofnowcastsobtainedbyselectingthebestnowcastforeachsectorexpostandcallthisinfeasiblealgorithmastheBestModelsalgorithm.Thisclearlyimplausiblecomparatorenablesustoseehowwellourapproachwoulddoifwewereabletoalwayschoosethemostaccurateforecast.WefindthattheBestModelsalgorithmdoesfarbetterthanthecombinationalgorithms,suggestingthatchoosingthebestnowcastmaybeatleastasimportantasgeneratingmoreorbetternowcastsopeninganotherinterestingavenueforfurtherresearch.
Results:SectoralGDPNowcasting,2019-2024
TableA4displaystheRMSFEandbias(averageerror)oftheDMA-MAEalgorithmforeachsector,whichhelpsunderstandthesectoralsourceofnowcasterrorsinthismodel.Thetablealsodisplaysthestandarddeviationofthetargetseries,aswellastheRMSFEdividedbythestandarddeviationtorepresentthesizeoftheforecasterrorsrelativetothevolatilityoftheseries.Thishelpsustoseewhetherlarge(small)forecasterrorscanbeattributedtothehigh(low)volatilityofthesectorgrowthseriesorotherfactors.ThetablealsocontainstheRMSFEoftheONSfirstestimateofsectoralGVA.Thetableindicatesthatinsomecases(highlightedinbold)themodelnowcastsaremoreaccurateintermsofRMSFEthantheONSsfirstestimate.
PolicyRecommendations
Pendingfurtherresearchalongthelinesweproposeabove,wewouldsummariseouradvicetotheeconomistnowcastingmonthlygrowthratesforthisquarterandthenextasfollows:
1.Useabottom-upapproach
2.Usesimpletime-seriesmodelsoraforecastcombinationapproachtoforecasteachofthebottomupelements
3.EmployaK-Nearest-Neighbourorsimilaralgorithmtotreatoutliersinthedata
4.Applyjudgementwhenyoucanseeashockthatthemodelcannot
5.Considerawiderrangeofinputvariablesandbig-datatop-downnowcastingmethodsinthepresenceofgreate
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 滿城縣2024年小升初數(shù)學(xué)試卷
- 2025年小學(xué)論語試題及答案
- 2025年小學(xué)素質(zhì)教育試題及答案
- 高中語文古詩詞教學(xué)中的審美素養(yǎng)培養(yǎng)研究
- 2025機(jī)械設(shè)計(jì)考試題及答案
- 工科專業(yè)學(xué)位研究生校企聯(lián)合培養(yǎng)模式探索
- 2025年小學(xué)修辭手法試題及答案
- 2025年小學(xué)從業(yè)考試試題及答案
- 2025公務(wù)員馬哲試題及答案
- 2025公務(wù)員立體試題及答案
- 疫情防控實(shí)戰(zhàn)演練方案腳本
- 資產(chǎn)評(píng)估事務(wù)所投標(biāo)服務(wù)方案總體工作方案評(píng)估工作關(guān)鍵性內(nèi)容及重難點(diǎn)分析
- Q∕SY 1356-2010 風(fēng)險(xiǎn)評(píng)估規(guī)范
- 拆卸與安裝油箱加油管
- 《綠色物流與綠色供應(yīng)鏈》PPT課件
- ISO13485-2016醫(yī)療器械質(zhì)量管理體系全套資料(手冊、程序文件、記錄表單)
- 術(shù)前訪視和術(shù)前準(zhǔn)備注意事項(xiàng).pptx
- 滬科版七年級(jí)數(shù)學(xué)上冊全套ppt課件
- SCH壁厚等級(jí)對(duì)照表
- 特種車輛維護(hù)保養(yǎng)技術(shù)協(xié)議
- 函數(shù)的單調(diào)性 (2)
評(píng)論
0/150
提交評(píng)論