


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共2頁重慶工程學(xué)院《云數(shù)據(jù)共享整合與應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的模型評估中,除了準(zhǔn)確率和召回率等常見指標(biāo),以下哪種指標(biāo)對于衡量模型的性能也很重要?()A.F1值,綜合考慮準(zhǔn)確率和召回率B.均方誤差,用于回歸問題C.混淆矩陣,詳細(xì)展示分類結(jié)果D.以上都是2、人工智能中的無人駕駛技術(shù)面臨著眾多技術(shù)和法律挑戰(zhàn)。假設(shè)我們在討論無人駕駛汽車的責(zé)任歸屬問題,以下關(guān)于無人駕駛責(zé)任的說法,哪一項是不正確的?()A.事故責(zé)任的判定應(yīng)該綜合考慮多種因素B.完全由無人駕駛汽車的制造商承擔(dān)責(zé)任C.法律法規(guī)需要隨著技術(shù)發(fā)展不斷完善D.乘客在某些情況下也可能承擔(dān)一定責(zé)任3、人工智能在金融領(lǐng)域的應(yīng)用不斷拓展,假設(shè)一個銀行使用人工智能系統(tǒng)進(jìn)行信用評估,以下關(guān)于這種應(yīng)用的描述,正確的是:()A.人工智能信用評估系統(tǒng)能夠完全取代人工評估,不會出現(xiàn)任何錯誤B.數(shù)據(jù)的質(zhì)量和特征選擇對人工智能信用評估系統(tǒng)的準(zhǔn)確性至關(guān)重要C.人工智能信用評估系統(tǒng)只考慮客戶的財務(wù)數(shù)據(jù),不考慮其他非財務(wù)因素D.銀行不需要對人工智能信用評估系統(tǒng)的結(jié)果進(jìn)行審核和監(jiān)督4、在人工智能的發(fā)展過程中,算法的創(chuàng)新起著關(guān)鍵作用。假設(shè)我們要設(shè)計一種新的人工智能算法,以下關(guān)于算法設(shè)計的原則,哪一項是不正確的?()A.高效性B.可擴(kuò)展性C.復(fù)雜性優(yōu)先D.創(chuàng)新性5、在人工智能的倫理和社會影響方面,存在許多需要思考的問題。假設(shè)一個基于人工智能的招聘系統(tǒng)根據(jù)候選人的簡歷和面試表現(xiàn)進(jìn)行篩選。以下關(guān)于這種系統(tǒng)可能帶來的潛在問題,哪一項是最值得關(guān)注的?()A.系統(tǒng)可能會因為數(shù)據(jù)偏差而對某些群體產(chǎn)生不公平的篩選結(jié)果B.系統(tǒng)的決策過程過于透明,導(dǎo)致企業(yè)招聘策略被競爭對手輕易了解C.系統(tǒng)可能會過于依賴簡歷信息,而忽略了候選人的實際能力和潛力D.系統(tǒng)的運(yùn)行成本過高,對企業(yè)造成經(jīng)濟(jì)負(fù)擔(dān)6、人工智能中的優(yōu)化算法用于訓(xùn)練模型和尋找最優(yōu)解。假設(shè)要訓(xùn)練一個復(fù)雜的神經(jīng)網(wǎng)絡(luò)模型,以下哪種優(yōu)化算法可能最為有效?()A.隨機(jī)梯度下降(SGD)算法,簡單直接,適用于各種模型B.自適應(yīng)矩估計(Adam)算法,能夠自動調(diào)整學(xué)習(xí)率,收斂速度快C.牛頓法,計算精度高,但計算復(fù)雜度大,不適合大規(guī)模數(shù)據(jù)D.以上算法的效果取決于具體的問題和模型結(jié)構(gòu),需要進(jìn)行實驗和比較7、人工智能中的自動機(jī)器學(xué)習(xí)(AutoML)旨在自動化模型的選擇和調(diào)優(yōu)過程。假設(shè)一個企業(yè)沒有專業(yè)的數(shù)據(jù)科學(xué)家,希望使用AutoML來構(gòu)建模型。以下關(guān)于自動機(jī)器學(xué)習(xí)的描述,哪一項是錯誤的?()A.AutoML可以自動搜索合適的算法、超參數(shù)和特征工程方法B.能夠降低模型開發(fā)的門檻,使非專業(yè)人員也能構(gòu)建有效的人工智能模型C.AutoML生成的模型總是優(yōu)于由經(jīng)驗豐富的數(shù)據(jù)科學(xué)家手動構(gòu)建的模型D.但仍需要一定的人工干預(yù)和監(jiān)督,以確保模型的合理性和可靠性8、在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)是重要的分支之一。假設(shè)一個醫(yī)療診斷系統(tǒng)需要通過大量的病例數(shù)據(jù)來預(yù)測疾病,以下關(guān)于機(jī)器學(xué)習(xí)在該場景中的應(yīng)用描述,哪一項是不準(zhǔn)確的?()A.監(jiān)督學(xué)習(xí)可以利用有標(biāo)記的病例數(shù)據(jù)訓(xùn)練模型,以進(jìn)行疾病預(yù)測B.無監(jiān)督學(xué)習(xí)能夠發(fā)現(xiàn)病例數(shù)據(jù)中的隱藏模式和結(jié)構(gòu),輔助診斷C.強(qiáng)化學(xué)習(xí)可以通過與環(huán)境的交互和獎勵機(jī)制,優(yōu)化診斷策略D.機(jī)器學(xué)習(xí)在醫(yī)療診斷中完全可以替代醫(yī)生的經(jīng)驗和判斷,不需要人工干預(yù)9、在一個利用人工智能進(jìn)行自動化文本分類的項目中,例如將新聞文章分類為不同的主題,為了提高分類的準(zhǔn)確性,以下哪種措施可能是有效的?()A.增加訓(xùn)練數(shù)據(jù)的多樣性B.選擇更復(fù)雜的分類算法C.對文本進(jìn)行更精細(xì)的預(yù)處理D.以上都是10、人工智能中的智能代理能夠自主地感知環(huán)境、做出決策并執(zhí)行動作。假設(shè)一個智能代理在游戲中與其他玩家交互。以下關(guān)于智能代理的描述,哪一項是錯誤的?()A.智能代理可以通過學(xué)習(xí)和經(jīng)驗積累來改進(jìn)自己的策略B.它能夠根據(jù)環(huán)境的變化實時調(diào)整自己的行為,以達(dá)到目標(biāo)C.智能代理的決策完全基于預(yù)設(shè)的規(guī)則,無法從環(huán)境中學(xué)習(xí)和適應(yīng)D.多個智能代理之間可以通過協(xié)作或競爭來實現(xiàn)更復(fù)雜的任務(wù)11、在人工智能的模型訓(xùn)練中,過擬合是一個常見的問題。假設(shè)正在訓(xùn)練一個用于手寫數(shù)字識別的神經(jīng)網(wǎng)絡(luò),以下關(guān)于防止過擬合的方法,哪一項是最有效的?()A.增加訓(xùn)練數(shù)據(jù)的數(shù)量B.減少神經(jīng)網(wǎng)絡(luò)的層數(shù)C.使用更復(fù)雜的激活函數(shù)D.不進(jìn)行任何處理,認(rèn)為過擬合不會影響模型性能12、在人工智能的遷移學(xué)習(xí)中,假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用到一個特定領(lǐng)域的小數(shù)據(jù)集上。以下哪種方法能夠有效地利用預(yù)訓(xùn)練模型的知識?()A.直接在新數(shù)據(jù)集上微調(diào)預(yù)訓(xùn)練模型B.重新訓(xùn)練一個新的模型,不使用預(yù)訓(xùn)練模型C.只使用預(yù)訓(xùn)練模型的最后一層輸出D.拋棄預(yù)訓(xùn)練模型,完全依靠隨機(jī)初始化訓(xùn)練13、在人工智能的發(fā)展過程中,可解釋性是一個重要的問題。假設(shè)一個深度學(xué)習(xí)模型在醫(yī)療診斷中做出了關(guān)鍵決策,但無法解釋其決策的依據(jù)。這可能會帶來哪些潛在的風(fēng)險?()A.醫(yī)生可能無法信任模型的結(jié)果B.模型的準(zhǔn)確率可能會下降C.模型的訓(xùn)練時間可能會增加D.模型的復(fù)雜度可能會降低14、深度學(xué)習(xí)模型在圖像識別任務(wù)中取得了顯著的成果。假設(shè)要訓(xùn)練一個深度卷積神經(jīng)網(wǎng)絡(luò)來識別不同種類的動物,以下關(guān)于模型訓(xùn)練的描述,正確的是:()A.增加網(wǎng)絡(luò)的層數(shù)一定能提高模型的識別準(zhǔn)確率,層數(shù)越多越好B.訓(xùn)練數(shù)據(jù)的數(shù)量和質(zhì)量對模型的性能影響不大,關(guān)鍵在于網(wǎng)絡(luò)結(jié)構(gòu)的設(shè)計C.模型在訓(xùn)練集上的準(zhǔn)確率很高,但在測試集上的準(zhǔn)確率很低,可能是出現(xiàn)了過擬合現(xiàn)象D.深度學(xué)習(xí)模型不需要進(jìn)行調(diào)參和優(yōu)化,直接使用默認(rèn)參數(shù)就能得到較好的結(jié)果15、人工智能中的自動推理技術(shù)在邏輯證明、問題求解等方面發(fā)揮著作用。假設(shè)我們要證明一個復(fù)雜的數(shù)學(xué)定理,使用自動推理系統(tǒng)。那么,關(guān)于自動推理,以下哪一項是不正確的?()A.可以基于邏輯規(guī)則和已知事實進(jìn)行推導(dǎo)B.能夠處理不確定和模糊的信息C.對于復(fù)雜問題可能會面臨計算復(fù)雜性的挑戰(zhàn)D.其結(jié)果的正確性完全依賴于輸入的前提和規(guī)則的準(zhǔn)確性二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述語音識別的技術(shù)和發(fā)展。2、(本題5分)解釋人工智能中的隱私保護(hù)措施。3、(本題5分)談?wù)剢柎鹣到y(tǒng)的構(gòu)建方法。4、(本題5分)說明人工智能在環(huán)境影響評估和可持續(xù)發(fā)展目標(biāo)實現(xiàn)中的應(yīng)用。三、操作題(本大題共5個小題,共25分)1、(本題5分)運(yùn)用深度學(xué)習(xí)框架構(gòu)建一個圖像分割模型,對醫(yī)學(xué)圖像中的器官和組織進(jìn)行分割,輔助醫(yī)生進(jìn)行診斷和治療。2、(本題5分)使用Python的Keras庫,實現(xiàn)一個基于長短時記憶網(wǎng)絡(luò)(LSTM)的模型,對電商平臺的用戶瀏覽歷史數(shù)據(jù)進(jìn)行商品推薦。通過引入?yún)f(xié)同過濾和內(nèi)容過濾技術(shù),提高推薦的準(zhǔn)確性和多樣性。3、(本題5分)借助自然語言處理技術(shù),對問答系統(tǒng)進(jìn)行構(gòu)建。能夠理解用戶的問題,從知識庫中搜索答案并返回準(zhǔn)確的回答。4、(本題5分)使用機(jī)器學(xué)習(xí)算法對金融市場數(shù)據(jù)進(jìn)行分析,預(yù)測股票價格的短期波動,為短線投資提供參考。5、(本題5分)借助TensorFlow構(gòu)建一個生成對抗網(wǎng)絡(luò)(GAN)用于圖像修復(fù),恢復(fù)損壞或缺失的圖像部分。定義生成器和判別器的架構(gòu)和損失函數(shù),通過對抗訓(xùn)練生成逼真的修復(fù)結(jié)果,評估修復(fù)圖像的質(zhì)量和視覺效果。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)分析一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年產(chǎn)3萬噸環(huán)??山到饬苣ぜ埣耙淮涡约埲萜魃a(chǎn)線項目可行性研究報告模板-立項拿地
- 2025年事業(yè)單位筆試-云南-云南衛(wèi)生事業(yè)管理(醫(yī)療招聘)歷年參考題庫含答案解析
- 神經(jīng)遞質(zhì)與行為研究
- 2025年事業(yè)單位筆試-上海-上海助產(chǎn)護(hù)理(醫(yī)療招聘)歷年參考題庫含答案解析
- 國產(chǎn)FPGA破局的精神密碼
- 2025年事業(yè)單位工勤技能-陜西-陜西軍工電子設(shè)備制造工四級(中級工)歷年參考題庫含答案解析(5套)
- 西安文職面試題目及答案
- 2025年公共基礎(chǔ)知識題庫及答案
- 公務(wù)員法法治課課件
- 養(yǎng)老講師課件
- 住院患兒實施院內(nèi)轉(zhuǎn)運(yùn)臨床實踐指南2023版課件
- 主播新手上路-打造游戲直播與娛樂新風(fēng)向
- 2024-2025學(xué)年中職數(shù)學(xué)基礎(chǔ)模塊 下冊高教版(2021·十四五)教學(xué)設(shè)計合集
- 第1-4章綜合檢測試卷2024-2025學(xué)年浙教版數(shù)學(xué)八年級上冊
- 中醫(yī)護(hù)理教案
- 市場營銷經(jīng)理助理考試題庫
- 初中數(shù)學(xué)新課標(biāo)下綜合實踐-項目式學(xué)習(xí)的思與行
- 數(shù)據(jù)安全重要數(shù)據(jù)風(fēng)險評估報告
- 四害消殺培訓(xùn)
- 人工智能實驗室建設(shè)規(guī)劃方案
- 伐木工安全培訓(xùn)
評論
0/150
提交評論