難點(diǎn)解析-黑龍江省北安市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向測(cè)評(píng)試題(含解析)_第1頁(yè)
難點(diǎn)解析-黑龍江省北安市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向測(cè)評(píng)試題(含解析)_第2頁(yè)
難點(diǎn)解析-黑龍江省北安市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向測(cè)評(píng)試題(含解析)_第3頁(yè)
難點(diǎn)解析-黑龍江省北安市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向測(cè)評(píng)試題(含解析)_第4頁(yè)
難點(diǎn)解析-黑龍江省北安市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向測(cè)評(píng)試題(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江省北安市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,在7×7的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,畫(huà)一條線(xiàn)段AB=,使點(diǎn)A,B在小正方形的頂點(diǎn)上,設(shè)AB與網(wǎng)格線(xiàn)相交所成的銳角為α,則不同角度的α有(

)A.1種 B.2種 C.3種 D.4種2、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點(diǎn)E為AB中點(diǎn),沿過(guò)點(diǎn)E的直線(xiàn)折疊,使點(diǎn)B與點(diǎn)A重合,折痕現(xiàn)交于點(diǎn)F,已知EF=,則BC的長(zhǎng)是()A. B.3 C.3 D.33、在直線(xiàn)l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別是1,2,3,正放置的四個(gè)正方形的面積依次是S1,S2,S3,S4,則S1+S2+S3+S4=()A.4 B.5 C.6 D.74、在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于(

)A.10 B.8 C.6或10 D.8或105、已知直角三角形的兩條邊長(zhǎng)分別是3和4,那么這個(gè)三角形的第三條邊的長(zhǎng)為(

)A.5 B.25 C. D.5或6、如圖,P是等邊三角形內(nèi)的一點(diǎn),且,,,以為邊在外作,連接,則以下結(jié)論中不正確的是(

)A. B. C. D.7、《九章算術(shù)》被尊為古代數(shù)學(xué)“群經(jīng)之首”,其卷九勾股定理篇記載:今有圓材埋于壁中,不知大?。凿忎徶?,深一寸,鋸道長(zhǎng)一尺.問(wèn)徑幾何?如圖,大意是,今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這個(gè)木材,鋸口深等于1寸,鋸道長(zhǎng)1尺,則圓形木材的直徑是(

)(1尺=10寸)A.12寸 B.13寸 C.24寸 D.26寸第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在長(zhǎng)方形ABCD中,AB=8,AD=10,點(diǎn)E為BC上一點(diǎn),將△ABE沿AE折疊,點(diǎn)B恰好落在線(xiàn)段DE上的點(diǎn)F處,則BE的長(zhǎng)為_(kāi)_____.2、我國(guó)古代的數(shù)學(xué)名著《九章算術(shù)》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問(wèn)索長(zhǎng)幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時(shí),繩索用盡問(wèn)繩索長(zhǎng)是多少?”示意圖如下圖所示,設(shè)繩索的長(zhǎng)為尺,根據(jù)題意,可列方程為_(kāi)_________.3、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長(zhǎng)為_(kāi)______4、已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,則Rt△ABC的面積等于_________cm2.5、在Rt△ABC中,∠C=90°,且AC∶BC=1∶7,AB=100米,則AC=_________米.6、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開(kāi)始時(shí)繩子BC的長(zhǎng)為17米,幾分鐘后船到達(dá)點(diǎn)D的位置,此時(shí)繩子CD的長(zhǎng)為10米,問(wèn)船向岸邊移動(dòng)了__米.7、如圖,在一次綜合實(shí)踐活動(dòng)中,小明將一張邊長(zhǎng)為的正方形紙片,沿著邊上一點(diǎn)與點(diǎn)的連線(xiàn)折疊,點(diǎn)是點(diǎn)的對(duì)應(yīng)點(diǎn),延長(zhǎng)交于點(diǎn),經(jīng)測(cè)量,,則的面積為_(kāi)_____.8、如圖,學(xué)校有一塊長(zhǎng)方形草坪,有極少數(shù)人為了避開(kāi)拐角走“捷徑”,在草坪內(nèi)走出了一條“路”,他們僅僅少走了________步路(假設(shè)步為米),卻踩傷了花草.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,某港口位于東西方向的海岸線(xiàn)上.“遠(yuǎn)航”號(hào)、“海天”號(hào)輪船同時(shí)離開(kāi)港口,各自沿一固定方向航行,“遠(yuǎn)航”號(hào)每小時(shí)航行16海里,“海天”號(hào)每小時(shí)航行12海里.它們離開(kāi)港口一個(gè)半小時(shí)后分別位于點(diǎn)Q,R處,且相距30海里.如果知道“遠(yuǎn)航”號(hào)沿東北方向航行,能知道“海天”號(hào)沿哪個(gè)方向航行嗎?2、如圖,一個(gè)長(zhǎng)5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).(1)求梯子底端B外移距離BD的長(zhǎng)度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.3、如圖,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,點(diǎn)A,C,D依次在同一直線(xiàn)上,且AB∥DE.(1)求證:△ABC≌△DCE;(2)連結(jié)AE,當(dāng)BC=5,AC=12時(shí),求AE的長(zhǎng).4、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點(diǎn),且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說(shuō)明理由;(2)求△ABC的周長(zhǎng).5、已知:如圖,四邊形ABCD,∠A=90°,AD=12,AB=16,CD=15,BC=25.(1)求BD的長(zhǎng);(2)求四邊形ABCD的面積.6、如圖是一個(gè)長(zhǎng)方形的大門(mén),小強(qiáng)拿著一根竹竿要通過(guò)大門(mén).他把竹竿豎放,發(fā)現(xiàn)竹竿比大門(mén)高1尺;然后他把竹竿斜放,竹竿恰好等于大門(mén)的對(duì)角線(xiàn)的長(zhǎng).已知大門(mén)寬4尺,請(qǐng)求出竹竿的長(zhǎng).7、如圖,在正方形ABCD中,E是邊AB上的一動(dòng)點(diǎn),點(diǎn)F在邊BC的延長(zhǎng)線(xiàn)上,且,連接DE,DF.(1)求證:;(2)連接EF,取EF中點(diǎn)G,連接DG并延長(zhǎng)交BC于H,連接BG.①依題意,補(bǔ)全圖形;②求證:;③若,用等式表示線(xiàn)段BG,HG與AE之間的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論.-參考答案-一、單選題1、C【解析】【詳解】如圖,(1)當(dāng)AB=時(shí),AB與網(wǎng)格線(xiàn)相交所成的兩個(gè)銳角:∠=45°;(2)當(dāng)AB=時(shí),AB與網(wǎng)格線(xiàn)相交所成的銳角∠有2個(gè)不同的角度;綜上所述,AB與網(wǎng)格線(xiàn)相交所成的銳角的不同角度有3個(gè).故選C.2、B【解析】【分析】折疊的性質(zhì)主要有:1.重疊部分全等;2.折痕是對(duì)稱(chēng)軸,對(duì)稱(chēng)點(diǎn)的連線(xiàn)被對(duì)稱(chēng)軸垂直平分.由折疊的性質(zhì)可知,所以可求出∠AFB=90°,再直角三角形的性質(zhì)可知,所以,的長(zhǎng)可求,再利用勾股定理即可求出BC的長(zhǎng).【詳解】解:AB=AC,,故選B.【考點(diǎn)】本題考查了折疊的性質(zhì)、等腰直角三角形的判斷和性質(zhì)以及勾股定理的運(yùn)用,求出∠AFB=90°是解題的關(guān)鍵.3、A【解析】【詳解】解:由勾股定理的幾何意義可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故選A.【考點(diǎn)】勾股定理包含幾何與數(shù)論兩個(gè)方面,幾何方面,一個(gè)直角三角形的斜邊的平方等于另外兩邊的平方和.這里,邊的平方的幾何意義就是以該邊為邊的正方形的面積.4、C【解析】【詳解】分兩種情況:在圖①中,由勾股定理,得;;∴BC=BD+CD=8+2=10.在圖②中,由勾股定理,得;;∴BC=BD―CD=8―2=6.故選C.5、D【解析】【分析】分情況討論:①當(dāng)邊長(zhǎng)為4的邊作斜邊時(shí);②當(dāng)邊長(zhǎng)為4的邊作直角邊時(shí),利用勾股定理分別求解即可.【詳解】解:當(dāng)邊長(zhǎng)為4的邊作斜邊時(shí),第三條邊的長(zhǎng)度為;當(dāng)邊長(zhǎng)為4的邊作直角邊時(shí),第三條邊的長(zhǎng)度為;綜上分析可知,這個(gè)三角形的第三條邊的長(zhǎng)為5或,故D正確.故選:D.【考點(diǎn)】本題主要考查了勾股定理,掌握分類(lèi)討論的思想是解題的關(guān)鍵.6、C【解析】【分析】根據(jù)△ABC是等邊三角形,得出∠ABC=60°,根據(jù)△BQC≌△BPA,得出∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,求出∠PBQ=60°,即可判斷A;根據(jù)勾股定理的逆定理即可判斷B;根據(jù)△BPQ是等邊三角形,△PCQ是直角三角形即可判斷D;求出∠APC=150°-∠QPC,和PC≠2QC,可得∠QPC≠30°,即可判斷C.【詳解】解:∵△ABC是等邊三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,所以A正確,不符合題意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,所以B正確,不符合題意;∵PB=QB=4,∠PBQ=60°,∴△BPQ是等邊三角形,∴∠BPQ=60°,∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°,所以D正確,不符合題意;∠APC=360°-150°-60°-∠QPC=150°-∠QPC,∵PC=5,QC=PA=3,∴PC≠2QC,∵∠PQC=90°,∴∠QPC≠30°,∴∠APC≠120°.所以C不正確,符合題意.故選:C.【考點(diǎn)】本題是三角形綜合題,考查了全等三角形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的逆定理,解決本題的關(guān)鍵是綜合應(yīng)用以上知識(shí).7、D【解析】【分析】連接OA、OC,由垂徑定理得AC=BC=AB=5寸,連接OA,設(shè)圓的半徑為x寸,再在Rt△OAC中,由勾股定理列出方程,解方程可得半徑,進(jìn)而直徑可求.【詳解】解:連接OA、OC,如圖:由題意得:C為AB的中點(diǎn),則O、C、D三點(diǎn)共線(xiàn),OC⊥AB,∴AC=BC=AB=5(寸),設(shè)圓的半徑為x寸,則OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圓材直徑為2×13=26(寸).故選:D【考點(diǎn)】本題主要考查了垂徑定理的應(yīng)用,勾股定理的應(yīng)用,熟練掌握垂徑定理,由勾股定理得出方程是解題的關(guān)鍵.二、填空題1、【解析】【分析】設(shè),則,由折疊的性質(zhì)可知,,在中利用勾股定理表示出,在中,利用勾股定理列方程求解.【詳解】解:設(shè),則,由折疊的性質(zhì)可知,,,.在中,,.在中,,即,解得.的長(zhǎng)為.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,折疊的性質(zhì),熟練掌握勾股定理是解題的關(guān)鍵.2、x2?(x?3)2=82【解析】【分析】設(shè)繩索長(zhǎng)為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設(shè)繩索長(zhǎng)為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出相應(yīng)方程是解題的關(guān)鍵.3、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長(zhǎng),進(jìn)而可得出BD的長(zhǎng),根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長(zhǎng).【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點(diǎn)】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.4、24【解析】【分析】利用勾股定理,可得:a2+b2=c2=100,即(a+b)2﹣2ab=100,可得ab=48,即可得出面積.【詳解】解:∵∠C=90°,∴a2+b2=c2=100,∴(a+b)2﹣2ab=100,∴196﹣2ab=100,∴ab=48,∴S△ABC==24cm2;故答案為:24.【考點(diǎn)】本題考查勾股定理、完全平方公式的變形求值、三角形面積計(jì)算的運(yùn)用,熟知勾股定理是解題的關(guān)鍵.5、【解析】【分析】首先根據(jù)BC,AC的比設(shè)出BC,AC,然后利用勾股定理列式計(jì)算求得a,即可求解.【詳解】解:∵AC∶BC=1∶7,∴設(shè)AC=a,則BC=7a,∵∠C=90°,∴AB2=AC2+BC2,∴1002=a2+(7a)2,解得:a=10,∴AC=10米.故答案為:10.【考點(diǎn)】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關(guān)鍵.6、9.【解析】【分析】在Rt△ABC中,利用勾股定理計(jì)算出AB長(zhǎng),再根據(jù)題意可得CD長(zhǎng),然后再次利用勾股定理計(jì)算出AD長(zhǎng),再利用BD=AB-AD可得BD長(zhǎng).【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動(dòng)了9米,故答案為:9.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,關(guān)鍵是掌握從題中抽象出勾股定理這一數(shù)學(xué)模型,畫(huà)出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.7、##【解析】【分析】根據(jù)題意,,進(jìn)而求得,勾股定理求得,即可求得的面積.【詳解】解:折疊,,,,∵四邊形是正方形∴中..故答案為:【考點(diǎn)】本題考查了折疊的性質(zhì),勾股定理,掌握勾股定理是解題的關(guān)鍵.8、【解析】【分析】少走的距離是AC+BC-AB,在直角△ABC中根據(jù)勾股定理求得AB的長(zhǎng)即可.【詳解】解:如圖,∵在中,,∴米,則少走的距離為:米,∵步為米,∴少走了步.故答案為:.【考點(diǎn)】本題考查正確運(yùn)用勾股定理.善于觀察題目的信息,掌握勾股定理是解題的關(guān)鍵.三、解答題1、北偏西45°(或西北)【解析】【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海

天”號(hào)航行方向.【詳解】解:由題意可得:RP=18海里,PQ=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“遠(yuǎn)航”號(hào)沿東北方向航行,即沿北偏東45°方向航行,∴∠RPS=45°,∴“海天”號(hào)沿北偏西45°(或西北)方向航行.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,解題的重點(diǎn)主要是能夠根據(jù)勾股定理的逆定理發(fā)現(xiàn)直角三角形,關(guān)鍵是從實(shí)際問(wèn)題中抽象出直角三角形,難度不大.2、(1)BD=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明見(jiàn)解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根據(jù)勾股定理求出OD,即可求出答案;(2)求出△AOB和△DOC全等,根據(jù)全等三角形的性質(zhì)得出OC=OB,∠ABO=∠DCO,求出∠OCB=∠OBC,求出∠EBC=∠ECB,根據(jù)等腰三角形的判定得出即可.【詳解】(1)∵AO⊥OD,AO=4m,AB=5m,∴OB==3m,∵梯子的頂端A沿墻下滑1m至C點(diǎn),∴OC=AO﹣AC=3m,∵CD=AB=5m,∴由勾股定理得:OD=4m,∴BD=OD﹣OB=4m﹣3m=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明如下:連接CB,由(1)知:AO=DO=4m,AB=CD=5m,∵∠AOB=∠DOC=90°,在Rt△AOB和Rt△DOC中,∴Rt△AOB≌Rt△DOC(HL),∴∠ABO=∠DCO,OC=OB,∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB,∴∠EBC=∠ECB,∴CE=BE.【考點(diǎn)】本題考查了勾股定理,等腰三角形的性質(zhì)和判定,全等三角形的判定與性質(zhì)等,能靈活運(yùn)用勾股定理進(jìn)行計(jì)算是解(1)的關(guān)鍵,能求出∠DCO=∠ABO和OC=OB是解(2)的關(guān)鍵.3、(1)見(jiàn)解析;(2)13【解析】【分析】根據(jù)題意可知,本題考查平行的性質(zhì),全等三角形的判定和勾股定理,根據(jù)判定定理,運(yùn)用兩直線(xiàn)平行內(nèi)錯(cuò)角相等再通過(guò)AAS以及勾股定理進(jìn)行求解.【詳解】解:(1)∵∴在△ABC和△DCE中∴△ABC≌△DCE(2)由(1)可得BC=CE=5在直角三角形ACE中【考點(diǎn)】本題考查平行的性質(zhì),全等三角形的判定和勾股定理,熟練掌握判定定理運(yùn)用以及平行的性質(zhì)是解決此類(lèi)問(wèn)題的關(guān)鍵.4、(1)△BDC為直角三角形,理由見(jiàn)解析;(2)△ABC的周長(zhǎng)為=cm.【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以△BDC為直角三角形;(2)由此可求出AC的長(zhǎng),周長(zhǎng)即可求出.(1)解:△BDC為直角三角形,理由如下,∵BC=10cm,CD=8cm,BD=6cm,而102=62+82,∴BC2=BD2+CD2.∴△BDC為直角三角形;(2)解:設(shè)AB=xcm,∵等腰△ABC,∴AB=AC=x,則AD=x-6,∵AB2=AD2+BD2,即x2=(x-6)2+82,∴x=,∴△ABC的周長(zhǎng)=2AB+BC=(cm).【考點(diǎn)】本題考查了勾股定理的逆定理,關(guān)鍵是根據(jù)等腰三角形的性質(zhì)、勾股定理以及逆定理的應(yīng)用解答.5、(1)BD=20;(2)S四邊形ABCD=246.【解析】【分析】(1)由∠A=90°,AD=12,AB=16,利用勾股定理:BD2=AD2+AB2,從而可得答案;(2)利用勾股定理的逆定理證明:∠CDB=90°,再由四邊形的面積等于兩個(gè)直角三角形的面積之和可得答案.【詳解】解:(1)∵∠A=90°,AD=12,AB=16,∴BD2=AD2+AB2,∴BD2=122+162,∴BD=20;(2)∵BD2+CD2=202+152=625,CB2=252=625,∴BD2+CD2=CB2,∴∠CDB=90°,∴S四邊形ABCD=SRt△ABD+SRt△CBD,=246.【考點(diǎn)】本題考查的是勾股定理與勾股定理的逆定理的應(yīng)用,掌握以上知識(shí)是解題的關(guān)鍵.6、尺【解析】【分析】根據(jù)題中所給的條件可知,竹竿斜放恰好等于門(mén)的對(duì)角線(xiàn)長(zhǎng),可與門(mén)的寬和高構(gòu)成直角三角形,運(yùn)用勾股定理可求出門(mén)高,進(jìn)而解答即可.【詳解】解:設(shè)門(mén)高為x尺,則竹竿長(zhǎng)為(x+1)尺,根據(jù)勾股定理可得:x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,∴門(mén)高7.5尺,竹竿高=7.5+1=8.5(尺).故答案為尺.【考點(diǎn)】本題考查勾股定理的運(yùn)用,正確運(yùn)用勾股定理,將數(shù)學(xué)思想運(yùn)用到實(shí)際問(wèn)題中是解題關(guān)鍵.7、(1)見(jiàn)解析(2)①見(jiàn)解析;②見(jiàn)解析;③BG2+HG2=4AE2.【解析】【分析】(1)證△ADE≌△CDF(SAS),得∠ADE=∠CDF,再證∠EDF=90°,即可得出結(jié)論;(2)①依題意,補(bǔ)全圖形即可;②由直角三角形斜邊上的中線(xiàn)性質(zhì)得DG=EF,BG=EF,即可得出結(jié)論;③先證△DEF是等腰直角三角形,得∠DEG=45°,再證

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論