難點解析滬科版9年級下冊期末測試卷及完整答案詳解一套_第1頁
難點解析滬科版9年級下冊期末測試卷及完整答案詳解一套_第2頁
難點解析滬科版9年級下冊期末測試卷及完整答案詳解一套_第3頁
難點解析滬科版9年級下冊期末測試卷及完整答案詳解一套_第4頁
難點解析滬科版9年級下冊期末測試卷及完整答案詳解一套_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列四個圖案中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.2、如圖是一個含有3個正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,將它鑲嵌在一個圓形的金屬框上,使A,G,H三點剛好在金屬框上,則該金屬框的半徑是()A. B. C. D.3、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.4、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.5、如圖,四邊形ABCD內接于⊙O,若∠ADC=130°,則∠AOC的度數(shù)為()A.25° B.80° C.130° D.100°6、下列圖形中,可以看作是中心對稱圖形的是()A. B.C. D.7、下列語句判斷正確的是()A.等邊三角形是軸對稱圖形,但不是中心對稱圖形B.等邊三角形既是軸對稱圖形,又是中心對稱圖形C.等邊三角形是中心對稱圖形,但不是軸對稱圖形D.等邊三角形既不是軸對稱圖形,也不是中心對稱圖形8、已知⊙O的半徑為4,,則點A在()A.⊙O內 B.⊙O上 C.⊙O外 D.無法確定第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如果點與點B關于原點對稱,那么點B的坐標是______.2、如圖,把△ABC繞點C順時針旋轉某個角度α得到,∠A=30°,∠1=70°,則旋轉角α的度數(shù)為_____.3、如圖,過⊙O外一點P,作射線PA,PB分別切⊙O于點A,B,,點C在劣弧AB上,過點C作⊙O的切線分別與PA,PB交于點D,E.則______度.4、如圖,、分別與相切于A、B兩點,若,則的度數(shù)為________.5、如圖,在等腰直角中,已知,將繞點逆時針旋轉60°,得到,連接,若,則________.6、如圖,AB為⊙O的弦,∠AOB=90°,AB=a,則OA=______,O點到AB的距離=______.7、如圖,在平面直角坐標系xOy中,P為x軸正半軸上一點.已知點,,為的外接圓.(1)點M的縱坐標為______;(2)當最大時,點P的坐標為______.三、解答題(7小題,每小題0分,共計0分)1、如圖,在⊙O中,弦AC與弦BD交于點P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.2、將銳角為45°的直角三角板MPN的一個銳角頂點P與正方形ABCD的頂點A重合,正方形ABCD固定不動,然后將三角板繞著點A旋轉,∠MPN的兩邊分別與正方形的邊BC、DC或其所在直線相交于點E、F,連接EF.(1)在三角板旋轉過程中,當∠MPN的兩邊分別與正方形的邊CB、DC相交時,如圖1所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關系;(2)在三角板旋轉過程中,當∠MPN的兩邊分別與正方形的邊CB、DC的延長線相交時,如圖2所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關系;(3)若正方形的邊長為4,在三角板旋轉過程中,當∠MPN的一邊恰好經過BC邊的中點時,試求線段EF的長.3、如圖,已知弓形的長,弓高,(,并經過圓心O).(1)請利用尺規(guī)作圖的方法找到圓心O;(2)求弓形所在的半徑的長.4、下面是“過圓外一點作圓的切線”的尺規(guī)作圖過程.已知:⊙O和⊙O外一點P.求作:過點P的⊙O的切線.作法:如圖,(1)連接OP;(2)分別以點O和點P為圓心,大于的長半徑作弧,兩弧相交于M,N兩點;(3)作直線MN,交OP于點C;(4)以點C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點;(5)作直線PA,PB.直線PA,PB即為所求作⊙O的切線完成如下證明:證明:連接OA,OB,∵OP是⊙C直徑,點A在⊙C上∴∠OAP=90°(___________)(填推理的依據).∴OA⊥AP.又∵點A在⊙O上,∴直線PA是⊙O的切線(___________)(填推理的依據).同理可證直線PB是⊙O的切線.5、解題與遐想.如圖,Rt△ABC的內切圓與斜邊AB相切于點D,AD=4,BD=5.求Rt△ABC的面積.王小明:這道題算出來面積剛好是20,太湊巧了吧.剛好是4×5=20,有種白算的感覺…趙麗華:我把4和5換成m、n再算一遍,△ABC的面積總是m?n!確實非常神奇了…數(shù)學劉老師:大家想一想,既然結果如此簡單到極致,不計算能不能得到呢?比如,拼圖?霍佳:劉老師,我在想另一個東西,這個圖能不能尺規(guī)畫出來啊感覺圖都定了.我怎么想不出來呢?計算驗證(1)通過計算求出Rt△ABC的面積.拼圖演繹(2)將Rt△ABC分割放入矩形中(左圖),通過拼圖能直接“看”出“20”請在圖中畫出拼圖后的4個直角三角形甲、乙、丙、丁的位置,作必要標注并簡要說明.尺規(guī)作圖(3)尺規(guī)作圖:如圖,點D在線段AB上,以AB為斜邊求作一個Rt△ABC,使它的內切圓與斜邊AB相切于點D.(保留作圖的痕跡,寫出必要的文字說明)6、如圖,在中,,,將繞著點A順時針旋轉得到,連接BD,連接CE并延長交BD于點F.(1)求的度數(shù);(2)若,且,求DF的長.7、在平面直角坐標系中,⊙O的半徑為1,對于直線l和線段AB,給出如下定義:若將線段AB關于直線l對稱,可以得到⊙O的弦A′B′(A′,B′分別為A,B的對應點),則稱線段AB是⊙O的關于直線l對稱的“關聯(lián)線段”.例如:在圖1中,線段是⊙O的關于直線l對稱的“關聯(lián)線段”.(1)如圖2,的橫、縱坐標都是整數(shù).①在線段中,⊙O的關于直線y=x+2對稱的“關聯(lián)線段”是_______;②若線段中,存在⊙O的關于直線y=-x+m對稱的“關聯(lián)線段”,則=;(2)已知直線交x軸于點C,在△ABC中,AC=3,AB=1,若線段AB是⊙O的關于直線對稱的“關聯(lián)線段”,直接寫出b的最大值和最小值,以及相應的BC長.-參考答案-一、單選題1、D【分析】根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項符合題意;故選:D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2、A【分析】如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結合正方形的性質可得:再設利用勾股定理建立方程,再解方程即可得到答案.【詳解】解:如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結合正方形的性質可得:四邊形為正方形,則設而AB=2,CD=3,EF=5,結合正方形的性質可得:而又而解得:故選A【點睛】本題考查的是正方形的性質,三角形外接圓圓心的確定,圓的基本性質,勾股定理的應用,二次根式的化簡,確定過A,G,H三點的圓的圓心是解本題的關鍵.3、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關鍵.4、C【分析】如圖所示,連接CP,由切線的性質和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質,切線長定理,等腰直角三角形的性質與判定,勾股定理,熟知切線長定理是解題的關鍵.5、D【分析】根據圓內接四邊形的性質求出∠B的度數(shù),根據圓周角定理計算即可.【詳解】解:∵四邊形ABCD內接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圓周角定理得,∠AOC=2∠B=100°,故選:D.【點睛】本題考查的是圓內接四邊形的性質和圓周角定理,掌握圓內接四邊形的對角互補是解題的關鍵.6、C【分析】根據中心對稱圖形的定義進行逐一判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項不符合題意;B、不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,故此選項符合題意;D、不是中心對稱圖形,故此選項不符合題意;故選C.【點睛】本題主要考查了中心對稱圖形的識別,解題的關鍵在于能夠熟練掌握中心對稱圖形的定義:把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心.7、A【分析】根據等邊三角形的對稱性判斷即可.【詳解】∵等邊三角形是軸對稱圖形,但不是中心對稱圖形,∴B,C,D都不符合題意;故選:A.【點睛】本題考查了等邊三角形的對稱性,熟練掌握等邊三角形的對稱性是解題的關鍵.8、C【分析】根據⊙O的半徑r=4,且點A到圓心O的距離d=5知d>r,據此可得答案.【詳解】解:∵⊙O的半徑r=4,且點A到圓心O的距離d=5,∴d>r,∴點A在⊙O外,故選:C.【點睛】本題主要考查點與圓的位置關系,點與圓的位置關系有3種.設⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內?d<r.二、填空題1、【分析】關于原點對稱的點坐標特征為:橫坐標、縱坐標都互為相反數(shù);進而求出點B坐標.【詳解】解:由題意知點B橫坐標為;縱坐標為;故答案為:.【點睛】本題考查了關于原點對稱的點的坐標知識.解題的關鍵在于熟練記憶關于原點對稱的點坐標中相對應的坐標互為相反數(shù).2、##【分析】由旋轉的性質可得再利用三角形的外角的性質求解從而可得答案.【詳解】解:把△ABC繞點C順時針旋轉某個角度α得到,∠A=30°,∠1=70°,故答案為:【點睛】本題考查的是旋轉的性質,三角形的外角的性質,利用性質的性質求解是解本題的關鍵.3、65【分析】連接OA,OC,OB,根據四邊形內角和可得,依據切線的性質及角平分線的判定定理可得DO平分,EO平分,再由各角之間的數(shù)量關系可得,,根據等量代換可得,代入求解即可.【詳解】解:如圖所示:連接OA,OC,OB,∵PA、PB、DE與圓相切于點A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案為:65.【點睛】題目主要考查圓的切線的性質,角平分線的判定和性質,四邊形內角和等,理解題意,作出相應輔助線,綜合運用這些知識點是解題關鍵.4、【分析】根據已知條件可得出,,再利用圓周角定理得出即可.【詳解】解:、分別與相切于、兩點,,,,,.故答案為:.【點睛】本題考查的知識點是切線的性質以及圓周角定理,掌握以上知識點是解此題的關鍵.5、【分析】如圖連接并延長,過點作交于點,,由題意可知為等邊三角形,,,在中;在中計算求解即可.【詳解】解:如圖連接并延長,過點作交于點,由題意可知,,為等邊三角形在中在中故答案為:.【點睛】本題考查了旋轉的性質,等邊三角形,勾股定理,含的直角三角形等知識.解題的關鍵在于做輔助線構造直角三角形.6、【分析】過O作OC垂直于弦AB,利用垂徑定理得到C為AB的中點,然后由OA=OB,且∠AOB為直角,得到三角形OAB為等腰直角三角形,由斜邊AB的長,利用勾股定理求出直角邊OA的長即可;再由C為AB的中點,由AB的長求出AC的長,在直角三角形OAC中,由OA及AC的長,利用勾股定理即可求出OC的長,即為O點到AB的距離.【詳解】解:過O作OC⊥AB,則有C為AB的中點,∵OA=OB,∠AOB=90°,AB=a,∴根據勾股定理得:OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根據勾股定理得:OC==.故答案為:;【點睛】此題考查了垂徑定理,等腰直角三角形的性質,以及勾股定理,在圓中遇到弦,常常過圓心作弦的垂線,根據近垂徑定理由垂直得中點,進而由弦長的一半,圓的半徑及弦心距構造直角三角形,利用勾股定理來解決問題.7、5(4,0)【分析】(1)根據點M在線段AB的垂直平分線上求解即可;(2)點P在⊙M切點處時,最大,而四邊形OPMD是矩形,由勾股定理求解即可.【詳解】解:(1)∵⊙M為△ABP的外接圓,∴點M在線段AB的垂直平分線上,∵A(0,2),B(0,8),∴點M的縱坐標為:,故答案為:5;(2)過點,,作⊙M與x軸相切,則點M在切點處時,最大,理由:若點是x軸正半軸上異于切點P的任意一點,設交⊙M于點E,連接AE,則∠AEB=∠APB,∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即點P在切點處時,∠APB最大,∵⊙M經過點A(0,2)、B(0,8),∴點M在線段AB的垂直平分線上,即點M在直線y=5上,∵⊙M與x軸相切于點P,MP⊥x軸,從而MP=5,即⊙M的半徑為5,設AB的中點為D,連接MD、AM,如上圖,則MD⊥AB,AD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四邊形OPMD是矩形,從而OP=MD,由勾股定理,得MD=,∴OP=MD=4,∴點P的坐標為(4,0),故答案為:(4,0).【點睛】本題考查了切線的性質,線段垂直平分線的性質,矩形的判定及勾股定理,正確作出圖形是解題的關鍵.三、解答題1、(1)證明見解析;(2).【分析】(1)連接,先證出,再根據圓周角定理可得,然后根據等腰三角形的判定即可得證;(2)連接,并延長交于點,連接,過作于點,先根據線段垂直平分線的判定與性質可得,再根據線段的和差、勾股定理可得,然后根據直角三角形全等的判定定理證出,根據全等三角形的性質可得,最后在中,利用勾股定理可得的長,從而可得的長,在中,利用勾股定理即可得.【詳解】證明:(1)如圖,連接,,,,即,,;(2)連接,并延長交于點,連接,過作于點,,,是的垂直平分線,,,,,在和中,,,,設,則,在中,,即,解得,在中,,即的半徑為.【點睛】本題考查了圓周角定理、直角三角形全等的判定定理與性質、勾股定理、垂徑定理等知識點,較難的是題(2),通過作輔助線,構造全等三角形和直角三角形是解題關鍵.2、(1)EF=DF+BE;(2)EF=DF-BE;(3)線段EF的長為或.【分析】(1)延長FD至G,使DG=BE,連接AG,先證△ABE≌△ADG,再證△GAF≌△EAF即可;(2)在DC上截取DH=BE,連接AH,先證△ADH≌△ABE,再證△HAF≌EAF即可;(3)分兩種情形分別求解即可解決問題.【詳解】解:(1)結論:EF=BE+DF.理由:延長FD至G,使DG=BE,連接AG,如圖①,∵ABCD是正方形,∴AB=AD,∠ABE=ADG=∠DAB=90°,∴△ABE≌△ADG(AAS),∴AE=AG,∠DAG=∠EAB,∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠DAF+∠DAG=45°,∴∠GAF=∠EAF=45°,∵AF=AF,∴△GAF≌△EAF(AAS),∴EF=GF,∴GF=DF+DG=DF+BE,即:EF=DF+BE;(2)結論:EF=DF-BE.理由:在DC上截取DH=BE,連接AH,如圖②,∵AD=AB,∠ADH=∠ABE=90°,∴△ADH≌△ABE(SAS),∴AH=AE,∠DAH=∠EAB,∵∠EAF=∠EAB+∠BAF=45°,∴∠DAH+∠BAF=45°,∴∠HAF=45°=∠EAF,∵AF=AF,∴△HAF≌EAF(SAS),∴HF=EF,∵DF=DH+HF,∴EF=DF-BE;(3)①當MA經過BC的中點E時,同(1)作輔助線,如圖:設FD=x,由(1)的結論得FG=EF=2+x,F(xiàn)C=4-x.在Rt△EFC中,(x+2)2=(4-x)2+22,∴x=,∴EF=x+2=.②當NA經過BC的中點G時,同(2)作輔助線,設BE=x,由(2)的結論得EC=4+x,EF=FH,∵K為BC邊的中點,∴CK=BC=2,同理可證△ABK≌FCK(SAS),∴CF=AB=4,EF=FH=CF+CD-DH=8-x,在Rt△EFC中,由勾股定理得到:(4+x)2+42=(8-x)2,∴x=,∴EF=8-=.綜上,線段EF的長為或.【點睛】本題屬于四邊形綜合題,考查了正方形的性質,旋轉變換,全等三角形的判定和性質,勾股定理等知識,解題的關鍵是學會利用旋轉法添加輔助線,構造全等三角形解決問題,學會利用參數(shù)構建方程解決問題.3、(1)見解析(2)10【分析】(1)作BC的垂直平分線,與直線CD的交點即為圓心;(2)連接OA,根據勾股定理列出方程即可求解.(1)解:如圖所示,點O即是圓心;(2)解:連接OA,∵,并經過圓心O,,∴,∵,∴解得,,答:半徑為10.【點睛】本題考查了垂徑定理和確定圓心,解題關鍵是熟練作圖確定圓心,利用垂徑定理和勾股定理求半徑.4、直徑所對的圓周角是直角經過半徑的外端并且垂直于這條半徑的直線是圓的切線【分析】連接OA,OB,根據圓周角定理可知∠OAP=90°,再依據切線的判定證明結論;【詳解】證明:連接OA,OB,∵OP是⊙C直徑,點A在⊙C上,∴∠OAP=90°(直徑所對的圓周角是直角),∴OA⊥AP.又∵點A在⊙O上,∴直線PA是⊙O的切線(經過半徑的外端并且垂直于這條半徑的直線是圓的切線),同理可證直線PB是⊙O的切線,故答案為:直徑所對的圓周角是直角;經過半徑的外端并且垂直于這條半徑的直線是圓的切線.5、(1)S△ABC=20;(2)見解析;(3)見解析.【分析】(1)設⊙O的半徑為r,由切線長定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,進而求得結果;(2)根據切線長定理可證明甲和乙兩個三角形全等,丙丁兩個三角形全等,故將甲乙圖形放在OE為邊的上方,將丙丁以OP為邊放在右側,圍成矩形的邊長是4和5;(3)可先計算∠AFB=135°,根據“定弦對定角”作F點的軌跡,根據切線性質,過點F作AB的垂線,再根據直徑所對的圓周角是90°,確定點C.【詳解】解:(1)如圖1,設⊙O的半徑為r,連接OE,OF,∵⊙O內切于△ABC,∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,∴∠OEC=∠OFC=∠C=90°,∴四邊形ECFO是矩形,∴CF=OE=r,CE=OF=r,∴AC=4+r,BC=5+r,在Rt△ABC中,由勾股定理得,(r+4)2+(r+5)2=92,∴r2+9r=20,∴S△ABC=====20;(2)如圖2,(3)設△ABC的內切圓記作⊙F,∴AF和BF平分∠BAC和∠ABC,F(xiàn)D⊥AB,∴∠BAF=∠CAB,∠ABF=,∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,∴∠AFB=135°,可以按以下步驟作圖(如圖3):①以BA為直徑作圓,作AB的垂直平分線交圓于點E,②以E為圓心,AE為半徑作圓,③過點D作AB的垂線,交圓于F,④連接EF并延長交圓于C,連接AC,BC,則△ABC就是求作的三角形.【點睛】本題考查三角形的內切圓性質、切線長定理、勾股定理、矩形的判定與性質、尺規(guī)作圖-作垂線,熟練掌握相關知識的聯(lián)系與運用是解答的關鍵.6、(1)45°;(2)【分析】(1)根據旋轉的性質得,,,,通過等量代換及三角形內角和得,根據四點共圓即可求得;(2)連接EB,先證明出,根據全等三角形的性質得,在中利用勾股定理,即可求得.【詳解】解:(1)由旋轉可知:,,,,∴,,.由三角形內角和定理得,∴點A,D,F(xiàn),E共圓.∴.(2)連接EB,∵,∴.∵,∴.又∵,,∴.∴,.∴.在中,,,,∵,∴.【點睛】本題考查了旋轉的性質、三角形全等判定及性質、勾股定理、三角形內角和等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論