




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省靈寶市中考數(shù)學(xué)真題分類(平行線的證明)匯編同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,、是的外角角平分線,若,則的大小為(
)A. B. C. D.2、如圖四邊形ABCD中,,將四邊形沿對角線AC折疊,使點B落在點處,若∠1=∠2=44°,則∠B為(
).A.66° B.104° C.114° D.124°3、如圖,點E在的延長線上,下列條件不能判斷的是(
)A. B. C. D.4、如圖,點是中邊上的一點,過作,垂足為.若,則是(
)A.直角三角形 B.銳角三角形 C.鈍角三角形 D.無法確定5、下列命題正確的是
()A.三角形的外角大于它的內(nèi)角B.三角形的一個外角等于它的兩個內(nèi)角C.三角形的一個內(nèi)角小于與它不相鄰的外角D.三角形的外角和是180°6、如圖,EF與的邊BC,AC相交,則與的大小關(guān)系為(
).A. B.C. D.大小關(guān)系取決于的度數(shù)7、如圖,在△ABC中,D為BC上一點,∠1=∠2,∠3=∠4,∠BAC=105°,則∠DAC的度數(shù)為(
)A.80° B.82° C.84° D.86°8、如圖,是某企業(yè)甲、乙兩位員工的能力測試結(jié)果的網(wǎng)狀圖,以O(shè)為圓心的五個同心圓分別代表能力水平的五個等級由低到高分別賦分1至5分,由原點出發(fā)的五條線段分別指向能力水平的五個維度,網(wǎng)狀圖能夠更加直觀的描述測試者的優(yōu)勢和不足,觀察圖形,有以下幾個推斷:①甲和乙的動手操作能力都很強;②缺少探索學(xué)習(xí)的能力是甲自身的不足;③與甲相比乙需要加強與他人的溝通合作能力;④乙的綜合評分比甲要高.其中合理的是(
)A.①③ B.②④ C.①②③ D.①②③④第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、用一組整數(shù)a,b,c的值說明命題“若a>b>c,則a+b>c”是錯誤的,這組值可以是a=__,b=__,c=__.2、把“等角的余角相等”改寫成“如果……那么……”的形式是_________,________,該命題是___命題(填“真”或“假”).3、如圖,在ΔABC中,E、F分別是AB、AC上的兩點,∠1+∠2=235°,則∠A=____度.4、如圖,在△ABC中,∠C=62°,△ABC兩個外角的角平分線相交于G,則∠G的度數(shù)為_____.5、在△ABC中,將∠B、∠C按如圖方式折疊,點B、C均落于邊BC上一點G處,線段MN、EF為折痕.若∠A=80°,則∠MGE=_____°.6、如圖,△ABC的外角∠DBC、∠ECB的角平分線交于點M,∠ACB的角平分線與BM的反向延長線交于點N,若在△CMN中存在一個內(nèi)角等于另一個內(nèi)角的2倍,則∠A的度數(shù)為_______7、如圖,在△ABC中,∠A=52°,∠ABC與∠ACB的角平分線交于點D1,∠ABD1與∠ACD1的角平分線交于點D2,則∠BD2C的度數(shù)是_____.三、解答題(7小題,每小題10分,共計70分)1、如圖,在三角形ABC中CD為的平分線,交AB于點D,,.(1)求證:;(2)如果,,試證明.2、指出下列命題的題設(shè)和結(jié)論,并判斷它們是真命題還是假命題,如果是假命題,舉出一個反例.(1)兩個角的和等于平角時,這兩個角互為補角;(2)內(nèi)錯角相等;(3)兩條平行線被第三條直線所截,內(nèi)錯角相等.3、用兩種方法證明“三角形的外角和等于360°”.已知:如圖,∠BAE,∠CBF,∠ACD是△ABC的三個外角.求證:∠BAE+∠CBF+∠ACD=360°.證法1:∵________________________________________________________________,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵______________,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.請把證法1補充完整,并用不同的方法完成證法2.4、如圖,已知∠A=50°,∠D=40°.(1)求∠1度數(shù);(2)求∠A+∠B+∠C+∠D+∠E的度數(shù).5、如圖,在中,點D為上一點,將沿翻折得到,與相交于點F,若平分,,.(1)求證:;(2)求的度數(shù).6、如圖,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于點E.P是邊BC上的動點(不與B,C重合),連結(jié)AP,將△APC沿AP翻折得△APD,連結(jié)DC,記∠BCD=α.(1)如圖,當P與E重合時,求α的度數(shù).(2)當P與E不重合時,記∠BAD=β,探究α與β的數(shù)量關(guān)系.7、在四邊形ABCD中,,.(1)如圖①,若,求出的度數(shù);(2)如圖②,若的角平分線交AB于點E,且,求出的度數(shù);(3)如圖③,若和的角平分線交于點E,求出的度數(shù).-參考答案-一、單選題1、B【解析】【分析】首先根據(jù)三角形內(nèi)角和與∠P得出∠PBC+∠PCB,然后根據(jù)角平分線的性質(zhì)得出∠ABC和∠ACB的外角和,進而得出∠ABC+∠ACB,即可得解.【詳解】∵∴∠PBC+∠PCB=180°-∠P=180°-60°=120°∵、是的外角角平分線∴∠DBC+∠ECB=2(∠PBC+∠PCB)=240°∴∠ABC+∠ACB=180°-∠DBC+180°-∠ECB=360°-240°=120°∴∠A=60°故選:B.【考點】此題主要考查角平分線以及三角形內(nèi)角和的運用,熟練掌握,即可解題.2、C【解析】【分析】根據(jù)兩直線平行,內(nèi)錯角相等可得,根據(jù)翻折變換的性質(zhì)可得,然后求出∠BAC,再根據(jù)三角形的內(nèi)角和等于180°列式計算即可得解.【詳解】解:在ABCD中,,∴,∵ABCD沿對角線AC折疊,使點B落在點處,∴,∴,在△ABC中,∠B=180°-∠BAC-∠2=180°-22°-44°=114°.故選C.【考點】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),三角形的內(nèi)角和定理,掌握“翻折前后對應(yīng)邊相等,對應(yīng)角相等”是解本題的關(guān)鍵.3、D【解析】【分析】直接利用平行線的判定方法分別判斷得出答案.【詳解】解:A、當∠5=∠B時,AB∥CD,不合題意;B、當∠1=∠2時,AB∥CD,不合題意;C、當∠B+∠BCD=180°時,AB∥CD,不合題意;D、當∠3=∠4時,AD∥CB,符合題意;故選:D.【考點】此題主要考查了平行線的判定,正確掌握平行線的判定方法是解題關(guān)鍵.4、A【解析】【分析】先求解再證明可得從而可得結(jié)論.【詳解】解:是直角三角形.故選A【考點】本題考查的是垂直的定義,三角形的內(nèi)角和定理的應(yīng)用,掌握“三角形的內(nèi)角和定理”是解本題的關(guān)鍵.5、C【解析】【詳解】【分析】根據(jù)三角形的外角性質(zhì):①三角形的外角和為360°;②三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;③三角形的一個外角大于和它不相鄰的任何一個內(nèi)角,分別進行分析即可.【詳解】A、三角形的外角大于與它不相鄰的內(nèi)角,故A選項錯誤;B、三角形的一個外角等于與它不相鄰的兩個內(nèi)角之和,故B選項錯誤;C、三角形的一個內(nèi)角小于和它不相鄰的任何一個外角,故C選項正確;D、三角形的外角和是360°,故D選項錯誤,故選C.【考點】本題主要考查了三角形的外角的性質(zhì),關(guān)鍵是熟練掌握性質(zhì)定理.6、C【解析】【分析】根據(jù)對頂角相等和三角形的內(nèi)角和定理即可得結(jié)論.【詳解】解:∵∠3=∠CEF,∠4=∠CFE∴∠CEF+∠CFE+∠C=∠3+∠4+∠C=180°又∵∠1+∠2+∠C=180°∴故選:C【考點】本題主要考查對頂角的性質(zhì)和三角形的內(nèi)角和定理,掌握對頂角的性質(zhì)和三角形的內(nèi)角和定理是解題的關(guān)鍵.7、A【解析】【分析】根據(jù)三角形的內(nèi)角和定理和三角形的外角性質(zhì)即可解決.【詳解】解:∵∠BAC=105°,∴∠2+∠3=75°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=75°,∴∠2=25°.∴∠DAC=105°?25°=80°.故選A.【考點】此題主要考查了三角形的外角性質(zhì)以及三角形內(nèi)角和定理,熟記三角形的內(nèi)角和定理,三角形的外角性質(zhì)是解題的關(guān)鍵.8、D【解析】【分析】根據(jù)甲、乙兩位員工的能力測試結(jié)果的網(wǎng)狀圖一一判斷即可得到答案;【詳解】解:因為甲、乙兩位員工的動手操作能力均是5分,故甲乙兩人的動手操作能力都很強,故①正確;因為甲的探索學(xué)習(xí)的能力是1分,故缺少探索學(xué)習(xí)的能力是甲自身的不足,故②正確;甲的與他人的溝通合作能力是5分,乙的與他人的溝通合作能力是3分,故與甲相比乙需要加強與他人的溝通合作能力,故③正確;乙的綜合評分是:3+4+4+5+5=22分,甲的綜合評分是:1+4+4+5+5=19分,故乙的綜合評分比甲要高,故④正確;故選:D;【考點】本題主要考查圖象信息題,能從圖象上獲取相關(guān)的信息是解題的關(guān)鍵;二、填空題1、
-2
-3
-4【解析】【分析】根據(jù)題意選擇a、b、c的值,即可得出答案,答案不唯一.【詳解】解:當a=﹣2,b=﹣3,c=﹣4時,﹣2>﹣3>﹣4,則(﹣2)+(﹣3)<(﹣4),∴命題若a>b>c,則a+b>c”是錯誤的;故答案為:﹣2,﹣3,﹣4.【考點】本題考查了命題與定理,要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.2、如果兩個角是等角的余角,那么這兩個角相等;真【解析】【分析】命題由題設(shè)和結(jié)論兩部分組成.題設(shè)是已知事項,結(jié)論是由已知事項推出的事項.命題常??梢詫憺椤叭绻敲础钡男问?,如果后面接題設(shè),那么后面接結(jié)論.題設(shè)成立,結(jié)論也成立的叫真命題,而題設(shè)成立,不保證結(jié)論成立的為假命題.【詳解】把“等角的余角相等”改寫成“如果…那么…”的形式是:如果兩個角是等角的余角,那么這兩個角相等.這個命題正確,是真命題,故答案為如果兩個角是等角的余角,那么這兩個角相等;真.【考點】本題考查了命題與定理,命題的“真”“假”是就命題的內(nèi)容而言.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.3、55【解析】【分析】根據(jù)三角形內(nèi)角和定理可知,要求∠A只要求出∠AEF+∠AFE的度數(shù)即可.【詳解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°?235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形內(nèi)角和定理)∴∠A=180°?125°=55°,故答案為:55°【考點】本題是有關(guān)三角形角的計算問題.主要考察三角形內(nèi)角和定理的應(yīng)用和計算,找到∠A所在的三角形是關(guān)鍵.4、59°##59度【解析】【分析】先利用三角形內(nèi)角和定理求出∠CAB+∠CBA=180°-∠C=118°,從而利用三角形外角的性質(zhì)求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分線的定義求出,由此求解即可.【詳解】解:∵∠C=62°,∴∠CAB+∠CBA=180°-∠C=118°,∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,∵△ABC兩個外角的角平分線相交于G,∴,,∴,∴∠G=180°-∠GAB-∠GBA=59°,故答案為:59°.【考點】本題主要考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),角平分線的定義,熟知相關(guān)知識是解題的關(guān)鍵.5、80【解析】【分析】由折疊的性質(zhì)可知:∠B=∠MGB,∠C=∠EGC,根據(jù)三角形的內(nèi)角和為180°,可求出∠B+∠C的度數(shù),進而得到∠MGB+∠EGC的度數(shù),問題得解.【詳解】解:∵線段MN、EF為折痕,∴∠B=∠MGB,∠C=∠EGC,∵∠A=80°,∴∠B+∠C=180°﹣80°=100°,∴∠MGB+∠EGC=∠B+∠C=100°,∴∠MGE=180°﹣100°=80°,故答案為:80.【考點】本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等,解題的關(guān)鍵是利用整體思想得到∠MGB+∠EGC的度數(shù).6、或或【解析】【分析】根據(jù),的角平分線交于點,可求得,延長至,根據(jù)為的外角的角平分線,可得是的外角的平分線,根據(jù)平分,得到,則有,可得,可求得;再根據(jù),分四種情況:①;②;③;④,分別討論求解即可.【詳解】解:外角,的角平分線交于點,∴;如圖示,延長至,為的外角的角平分線,是的外角的平分線,,平分,,,,即,又,∴,即;;如果中,存在一個內(nèi)角等于另一個內(nèi)角的2倍,那么分四種情況:①,則,;②,則,,;③,則,解得;④,則,解得.綜上所述,的度數(shù)是或或.【考點】本題是三角形綜合題,考查了三角形內(nèi)角和定理、外角的性質(zhì),角平分線定義等知識;靈活運用三角形的內(nèi)角和定理、外角的性質(zhì)進行分類討論是解題的關(guān)鍵.7、84°##84度【解析】【分析】利用角平分線的定義∠ABD2=∠ABD1=,∠ACD2=∠ACD1=,求出∠CBD2=,,再根據(jù)三角形的內(nèi)角和定理以及,再把∠A代入即可求∠BD2C的度數(shù).【詳解】解:∵BD1、CD1分別平分∠ABC和∠ACB,∴∠D1BA=∠D1BC=∠ABC,∠D1CA=∠D1CB=∠ACB,∵BD2、CD2分別平分∠ABD1和∠ACD1,∴∠ABD2=∠ABD1=,∠ACD2=∠ACD1=,∴∠CBD2=,∴,∴∠BD2C=180°-(∠D2BC+∠D2CB)=180°-(∠ABC+∠ABC),當∠A=52°時,∠BD2C=180°-×(180°-52°),=84°.故答案為84°.【考點】此題考查三角形內(nèi)角和定理,解題關(guān)鍵在于利用角平分線的定義進行有關(guān)計算.三、解答題1、(1)見解析(2)見解析【解析】【分析】(1)先根據(jù)角平分線的定義求得∠ACB,進而說明∠ACB=∠3,然后運用同位角相等、兩直線平行即可證明;(2)先根據(jù)兩直線平行、內(nèi)錯角相等可得,進而得到∠BCD=∠2可得EF//DC,運用平行線的性質(zhì)可得∠BFE=∠BDC,最后結(jié)合即可證明.(1)證明:∵CD平分,(已知)∴(角平分線的定義)又∵(已知)∴(等量代換)∴.(2)證明:由(1)知(已證)∴(兩直線平行,內(nèi)錯角相等)又∵(已知)∴(等量代換)∴(同位角相等,兩直線平行)∴(兩直線平行,同位角相等)又∵(已知)∴(垂直的定義)∴(等量代換)∴(垂直的定義).【考點】本題主要考查了平行線的判定與性質(zhì)、角平分線的定義等知識點,靈活運用平行線線的判定與性質(zhì)成為解答本題的關(guān)鍵.2、(1)題設(shè):如果兩個角的和等于平角時,結(jié)論:那么這兩個角互為補角;是真命題;(2)題設(shè):如果兩個角是內(nèi)錯角,那么這兩個角相等;是假命題,反例見解析;(3)題設(shè):如果兩條平行線被第三條直線所截,結(jié)論:那么內(nèi)錯角相等.是真命題.【解析】【分析】(1)根據(jù)將命題寫成“如果…,那么…”的形式,“如果”后面寫題設(shè),“那么”后面寫結(jié)論可得題設(shè)和結(jié)論,根據(jù)平角的定義可得該命題是真命題;(2)根據(jù)將命題寫成“如果…,那么…”的形式,“如果”后面寫題設(shè),“那么”后面寫結(jié)論可得題設(shè)和結(jié)論,根據(jù)平行線的性質(zhì)可得該命題是假命題;利用相交直線被第三條直線所截,內(nèi)錯角不相等可舉反例;(3)根據(jù)將命題寫成“如果…,那么…”的形式,“如果”后面寫題設(shè),“那么”后面寫結(jié)論可得題設(shè)和結(jié)論,根據(jù)平行線的性質(zhì)可得該命題是真命題;.【詳解】(1)題設(shè):如果兩個角的和等于平角,結(jié)論:那么這兩個角互為補角;是真命題;(2)題設(shè):如果兩個角是內(nèi)錯角,那么這兩個角相等;是假命題,如圖∠1與∠2是內(nèi)錯角,∠2>∠1;(3)題設(shè):如果兩條平行線被第三條直線所截,結(jié)論:那么內(nèi)錯角相等.是真命題.【考點】本題考查了命題與定理的相關(guān)知識.將命題寫成“如果…,那么…”的形式,就是要明確命題的題設(shè)和結(jié)論,“如果”后面寫題設(shè),“那么”后面寫結(jié)論.關(guān)鍵是明確命題與定理的組成部分,會判斷命題的題設(shè)與結(jié)論.3、證法1:平角等于180°;∠1+∠2+∠3=180°;證法二見解析【解析】【詳解】試題分析:證法1:根據(jù)平角的定義得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根據(jù)三角形內(nèi)角和定理和角的和差關(guān)系即可得到結(jié)論;證法2:要求證∠BAE+∠CBF+∠ACD=360°,根據(jù)三角形外角性質(zhì)得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,則∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根據(jù)三角形內(nèi)角和定理即可得到結(jié)論.試題解析:證法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.證法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.4、(1)(2)【解析】【分析】(1)根據(jù)三角形的外角的性質(zhì)即可得到結(jié)論;(2)設(shè)∠1的同旁內(nèi)角為∠2,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠1=∠A+∠C,∠2=∠B+∠D,然后利用三角形的內(nèi)角和定理列式計算即可得解.(1)∠1=∠A+∠D=90°;,(2)設(shè)∠1的同旁內(nèi)角為∠2,如圖,∵∠1=∠A+∠D,∠2=∠B+∠E,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【考點】本題考查了三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),三角形的內(nèi)角和定理,熟記性質(zhì)并準確識圖是解題的關(guān)鍵.5、(1)證明見解析;(2).【解析】【分析】(1)利用三角形內(nèi)角和定理求出,再利用折疊和角平分線的性質(zhì)證明,即可證明;(2)利用三角形內(nèi)角和定理求出,再利用對頂角相等證明,再利用三角形內(nèi)角和定理即可求出.(1)證明:∵,,∴,∵AE平分,∴,∵,∴,∴,∴,(2)解:,∴,∵,且,∴.【考點】本題考查三角形內(nèi)角和定理,折疊的性質(zhì),角平分線的性質(zhì),對頂角相等,(1)的關(guān)鍵是求出,證明;(2)的關(guān)鍵是求出.6、(1)25°(2)①
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年氣管切開患者護理查房
- 供暖公司運維知識培訓(xùn)課件
- 2025年新型皮革鞣劑項目合作計劃書
- 2025年集成電路用化學(xué)品項目發(fā)展計劃
- 供應(yīng)鏈管理課程授課課件
- 天一大聯(lián)考海南省2026屆化學(xué)高二上期末聯(lián)考試題含答案
- 2025年家居空間設(shè)計項目合作計劃書
- 人民陪審員制度改革課件
- 佳鑫電子電工知識培訓(xùn)課件
- 語文教師招聘面試題庫精 編
- 四年級數(shù)學(xué)上冊《大數(shù)的認識》單元測試卷
- DB23∕1270-2019 黑龍江省居住建筑節(jié)能設(shè)計標準
- 淺談地下室底板無梁樓蓋設(shè)計
- ISO14001內(nèi)部審核檢查表
- 立柱樁施工匯總
- 雙塊式無砟軌道施工工藝及質(zhì)量控制
- 管理會計知識點整理
- 導(dǎo)管相關(guān)血流感染的治療
- 工程進度款支付申請書
- 我國常見的草坪草
- 后腹腔鏡下腎囊腫去頂減壓術(shù)ppt課件
評論
0/150
提交評論