江西航空職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)處理與云計(jì)算》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
江西航空職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)處理與云計(jì)算》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
江西航空職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)處理與云計(jì)算》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
江西航空職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)處理與云計(jì)算》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁,共2頁江西航空職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)處理與云計(jì)算》2024-2025學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、大數(shù)據(jù)分析平臺(tái)有很多種,以下關(guān)于大數(shù)據(jù)分析平臺(tái)的描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)分析平臺(tái)可以提供數(shù)據(jù)存儲(chǔ)、處理、分析等功能B.大數(shù)據(jù)分析平臺(tái)可以支持多種數(shù)據(jù)分析算法和工具C.大數(shù)據(jù)分析平臺(tái)只適用于大規(guī)模企業(yè),不適用于中小企業(yè)D.大數(shù)據(jù)分析平臺(tái)需要具備高可用性和可擴(kuò)展性2、在處理大數(shù)據(jù)時(shí),數(shù)據(jù)清洗是一個(gè)重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)清洗的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)清洗旨在去除重復(fù)數(shù)據(jù)、糾正錯(cuò)誤數(shù)據(jù)和處理缺失值B.數(shù)據(jù)清洗可以通過編寫復(fù)雜的算法來自動(dòng)完成,無需人工干預(yù)C.數(shù)據(jù)清洗有助于提高數(shù)據(jù)質(zhì)量,為后續(xù)的數(shù)據(jù)分析和挖掘提供可靠基礎(chǔ)D.數(shù)據(jù)清洗可能包括對(duì)數(shù)據(jù)格式的標(biāo)準(zhǔn)化和數(shù)據(jù)類型的轉(zhuǎn)換3、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)治理變得越來越重要。假設(shè)一個(gè)企業(yè)擁有多個(gè)業(yè)務(wù)系統(tǒng),數(shù)據(jù)分散在不同的數(shù)據(jù)庫和文件中,缺乏統(tǒng)一的管理和規(guī)范。以下哪項(xiàng)不是數(shù)據(jù)治理的主要目標(biāo)?()A.確保數(shù)據(jù)的準(zhǔn)確性和完整性B.提高數(shù)據(jù)的訪問速度C.保障數(shù)據(jù)的安全性和合規(guī)性D.促進(jìn)數(shù)據(jù)的共享和流通4、在大數(shù)據(jù)分析中,假設(shè)要對(duì)一個(gè)高維數(shù)據(jù)集進(jìn)行可視化,以下哪種技術(shù)可以幫助降低維度并展示數(shù)據(jù)的分布?()A.多維縮放B.自組織映射C.獨(dú)立成分分析D.以上都是5、在大數(shù)據(jù)應(yīng)用中,精準(zhǔn)營(yíng)銷是一個(gè)重要領(lǐng)域。如果要根據(jù)用戶的實(shí)時(shí)行為進(jìn)行實(shí)時(shí)的個(gè)性化推薦,以下哪種技術(shù)架構(gòu)較為合適?()A.離線計(jì)算架構(gòu)B.實(shí)時(shí)計(jì)算架構(gòu)C.混合計(jì)算架構(gòu)D.以上都不合適6、在大數(shù)據(jù)處理中,為了處理數(shù)據(jù)的不一致性和錯(cuò)誤,以下哪種方法經(jīng)常被采用?()A.數(shù)據(jù)驗(yàn)證B.數(shù)據(jù)修復(fù)C.數(shù)據(jù)清洗D.以上都是7、在大數(shù)據(jù)的時(shí)間序列分析中,季節(jié)性是一個(gè)常見的特征。假設(shè)我們有一個(gè)銷售數(shù)據(jù)的時(shí)間序列,具有明顯的季節(jié)性。以下哪種方法可以用于處理季節(jié)性?()A.移動(dòng)平均法B.指數(shù)平滑法C.季節(jié)性ARIMA模型D.線性回歸8、隨著大數(shù)據(jù)技術(shù)的發(fā)展,數(shù)據(jù)倉庫和數(shù)據(jù)集市的概念也在不斷演進(jìn)。假設(shè)一個(gè)企業(yè)擁有多個(gè)業(yè)務(wù)部門,每個(gè)部門都有自己特定的數(shù)據(jù)需求和分析視角。在這種情況下,以下關(guān)于數(shù)據(jù)倉庫和數(shù)據(jù)集市的描述,哪一項(xiàng)是正確的?()A.數(shù)據(jù)倉庫包含企業(yè)級(jí)的綜合數(shù)據(jù),數(shù)據(jù)集市是數(shù)據(jù)倉庫的子集,針對(duì)特定部門或主題B.數(shù)據(jù)集市包含企業(yè)級(jí)的綜合數(shù)據(jù),數(shù)據(jù)倉庫是數(shù)據(jù)集市的子集,針對(duì)特定部門或主題C.數(shù)據(jù)倉庫和數(shù)據(jù)集市是相互獨(dú)立的,沒有包含關(guān)系D.數(shù)據(jù)倉庫和數(shù)據(jù)集市是相同的概念,只是名稱不同9、在大數(shù)據(jù)的分析中,數(shù)據(jù)的預(yù)處理往往會(huì)占用大量的時(shí)間和資源。假設(shè)要對(duì)一個(gè)包含大量噪聲和缺失值的數(shù)據(jù)集進(jìn)行預(yù)處理。以下哪種方法最能提高預(yù)處理的效率和效果?()A.并行預(yù)處理B.自動(dòng)化預(yù)處理工具C.基于機(jī)器學(xué)習(xí)的預(yù)處理D.以上方法結(jié)合使用10、在大數(shù)據(jù)分析中,回歸分析是一種常見的方法。以下關(guān)于線性回歸和邏輯回歸的比較,哪一項(xiàng)是不正確的?()A.線性回歸用于預(yù)測(cè)連續(xù)值,邏輯回歸用于預(yù)測(cè)分類值B.線性回歸的輸出范圍是實(shí)數(shù)域,邏輯回歸的輸出范圍是[0,1]C.線性回歸的模型復(fù)雜度通常比邏輯回歸高D.邏輯回歸可以通過設(shè)定閾值將輸出轉(zhuǎn)換為分類結(jié)果11、假設(shè)要對(duì)大量的文本數(shù)據(jù)進(jìn)行情感分類,并且考慮上下文信息,以下哪種深度學(xué)習(xí)模型可能表現(xiàn)更好?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)B.卷積神經(jīng)網(wǎng)絡(luò)C.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)D.門控循環(huán)單元12、在大數(shù)據(jù)時(shí)代,數(shù)據(jù)血緣關(guān)系的追蹤變得重要。假設(shè)我們有一個(gè)數(shù)據(jù)分析流程,以下關(guān)于數(shù)據(jù)血緣關(guān)系的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)血緣關(guān)系可以幫助理解數(shù)據(jù)的來源和流向B.數(shù)據(jù)血緣關(guān)系能夠快速定位數(shù)據(jù)處理過程中的錯(cuò)誤C.數(shù)據(jù)血緣關(guān)系只存在于數(shù)據(jù)倉庫中,在其他數(shù)據(jù)存儲(chǔ)系統(tǒng)中不存在D.數(shù)據(jù)血緣關(guān)系有助于評(píng)估數(shù)據(jù)變更對(duì)整個(gè)系統(tǒng)的影響13、在大數(shù)據(jù)安全和隱私保護(hù)方面,面臨著諸多挑戰(zhàn)。對(duì)于大數(shù)據(jù)安全的措施和原則,以下說法錯(cuò)誤的是:()A.采用加密技術(shù)對(duì)敏感數(shù)據(jù)進(jìn)行加密存儲(chǔ)和傳輸,以防止數(shù)據(jù)泄露B.實(shí)施嚴(yán)格的訪問控制策略,確保只有授權(quán)人員能夠訪問和處理數(shù)據(jù)C.數(shù)據(jù)匿名化和脫敏處理可以在一定程度上保護(hù)用戶隱私,但不能完全消除隱私風(fēng)險(xiǎn)D.為了提高數(shù)據(jù)的可用性,應(yīng)盡量減少安全措施和限制,方便數(shù)據(jù)的共享和使用14、在大數(shù)據(jù)處理中,數(shù)據(jù)質(zhì)量問題會(huì)影響數(shù)據(jù)分析的結(jié)果,以下關(guān)于數(shù)據(jù)質(zhì)量問題的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)質(zhì)量問題包括數(shù)據(jù)的準(zhǔn)確性、完整性、一致性等方面B.數(shù)據(jù)質(zhì)量問題可以通過數(shù)據(jù)清洗和數(shù)據(jù)驗(yàn)證等方法進(jìn)行解決C.數(shù)據(jù)質(zhì)量問題只存在于原始數(shù)據(jù)中,經(jīng)過處理后的數(shù)據(jù)不會(huì)存在質(zhì)量問題D.數(shù)據(jù)質(zhì)量問題需要建立完善的數(shù)據(jù)質(zhì)量管理體系進(jìn)行管理15、大數(shù)據(jù)分析中的異常檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)要從一個(gè)網(wǎng)絡(luò)流量數(shù)據(jù)集中檢測(cè)出異常的流量模式。以下哪種方法最常用于網(wǎng)絡(luò)流量的異常檢測(cè)?()A.基于統(tǒng)計(jì)的方法B.基于機(jī)器學(xué)習(xí)的方法C.基于規(guī)則的方法D.以上方法結(jié)合使用16、在大數(shù)據(jù)應(yīng)用中,地理信息系統(tǒng)(GIS)與大數(shù)據(jù)的結(jié)合越來越緊密。以下關(guān)于GIS與大數(shù)據(jù)結(jié)合的優(yōu)勢(shì),哪一項(xiàng)描述不準(zhǔn)確?()A.能夠處理大規(guī)模的地理空間數(shù)據(jù)B.可以進(jìn)行更精確的地理空間分析C.有助于發(fā)現(xiàn)地理空間數(shù)據(jù)中的隱藏模式D.會(huì)降低地理信息系統(tǒng)的運(yùn)行效率17、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)壓縮技術(shù)可以節(jié)省存儲(chǔ)空間和提高傳輸效率。以下關(guān)于無損壓縮和有損壓縮的比較,哪一項(xiàng)是錯(cuò)誤的?()A.無損壓縮能夠完全還原原始數(shù)據(jù),有損壓縮不能B.有損壓縮的壓縮比通常比無損壓縮高C.圖像和音頻數(shù)據(jù)通常適合有損壓縮,文本數(shù)據(jù)適合無損壓縮D.無損壓縮的算法復(fù)雜度通常比有損壓縮低18、在大數(shù)據(jù)時(shí)代,數(shù)據(jù)分析師的角色變得越來越重要。以下關(guān)于數(shù)據(jù)分析師職責(zé)的描述,不準(zhǔn)確的是()A.負(fù)責(zé)設(shè)計(jì)和實(shí)施數(shù)據(jù)分析項(xiàng)目,解決業(yè)務(wù)問題B.僅需要掌握數(shù)據(jù)分析工具和技術(shù),無需了解業(yè)務(wù)背景C.能夠?qū)⒎治鼋Y(jié)果以清晰易懂的方式呈現(xiàn)給決策者D.不斷探索新的數(shù)據(jù)分析方法和技術(shù),提升分析能力19、假設(shè)要對(duì)大量的音頻數(shù)據(jù)進(jìn)行分析和處理,以下哪種技術(shù)或工具可能會(huì)被用到?()A.語音識(shí)別技術(shù)B.音頻處理庫C.深度學(xué)習(xí)框架D.以上都是20、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)質(zhì)量的管理至關(guān)重要。以下關(guān)于數(shù)據(jù)質(zhì)量的影響因素和管理方法,哪項(xiàng)說法不準(zhǔn)確?()A.數(shù)據(jù)質(zhì)量可能受到數(shù)據(jù)來源的多樣性、數(shù)據(jù)錄入的錯(cuò)誤、數(shù)據(jù)更新的不及時(shí)等因素的影響B(tài).為了提高數(shù)據(jù)質(zhì)量,可以采用數(shù)據(jù)清洗、數(shù)據(jù)驗(yàn)證、數(shù)據(jù)監(jiān)控等方法C.數(shù)據(jù)質(zhì)量的管理只需在數(shù)據(jù)收集階段進(jìn)行,后續(xù)處理過程中無需關(guān)注D.建立數(shù)據(jù)質(zhì)量評(píng)估指標(biāo)體系有助于衡量和改進(jìn)數(shù)據(jù)質(zhì)量21、在大數(shù)據(jù)分析中,數(shù)據(jù)挖掘是一種重要的技術(shù)手段。假設(shè)有一個(gè)電商網(wǎng)站的銷售數(shù)據(jù),需要挖掘出哪些商品經(jīng)常被一起購買,從而進(jìn)行商品推薦。以下哪種數(shù)據(jù)挖掘算法適用于這種關(guān)聯(lián)分析?()A.Apriori算法B.KNN(K-NearestNeighbor)算法C.C4.5算法D.SVM(SupportVectorMachine)算法22、在大數(shù)據(jù)分析中,數(shù)據(jù)降維是一種常見的操作。如果數(shù)據(jù)具有較高的維度且存在相關(guān)性,以下哪種降維方法較為常用?()A.主成分分析B.因子分析C.線性判別分析D.以上都是23、在大數(shù)據(jù)的隱私保護(hù)方面,數(shù)據(jù)匿名化是一種常用的技術(shù)。假設(shè)我們有一個(gè)包含個(gè)人敏感信息的數(shù)據(jù)集,需要在發(fā)布數(shù)據(jù)前進(jìn)行匿名化處理。以下關(guān)于數(shù)據(jù)匿名化的說法,哪一項(xiàng)是錯(cuò)誤的?()A.數(shù)據(jù)匿名化可以完全消除數(shù)據(jù)泄露的風(fēng)險(xiǎn)B.匿名化后的數(shù)據(jù)仍然可能通過鏈接攻擊等方式被重新識(shí)別C.在進(jìn)行匿名化處理時(shí),需要平衡數(shù)據(jù)的可用性和隱私保護(hù)程度D.不同的匿名化方法對(duì)數(shù)據(jù)的保護(hù)程度和可用性影響不同24、在大數(shù)據(jù)處理中,常常需要進(jìn)行數(shù)據(jù)采樣。假設(shè)有一個(gè)非常大的數(shù)據(jù)集,為了快速得到數(shù)據(jù)分析的初步結(jié)果,以下哪種采樣方法可能比較合適?()A.隨機(jī)采樣B.分層采樣C.系統(tǒng)采樣D.Alloftheabove(以上皆是)25、隨著大數(shù)據(jù)技術(shù)的發(fā)展,數(shù)據(jù)倉庫和數(shù)據(jù)集市的應(yīng)用越來越廣泛。對(duì)于一個(gè)大型企業(yè)來說,以下關(guān)于數(shù)據(jù)倉庫和數(shù)據(jù)集市的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.數(shù)據(jù)倉庫通常存儲(chǔ)整個(gè)企業(yè)的歷史數(shù)據(jù),數(shù)據(jù)集市則側(cè)重于特定部門或主題的數(shù)據(jù)B.數(shù)據(jù)倉庫的數(shù)據(jù)更新頻率相對(duì)較低,而數(shù)據(jù)集市的數(shù)據(jù)更新可能更頻繁C.數(shù)據(jù)倉庫的建設(shè)成本通常高于數(shù)據(jù)集市,但其數(shù)據(jù)質(zhì)量和一致性更有保障D.數(shù)據(jù)集市可以獨(dú)立于數(shù)據(jù)倉庫存在,不需要從數(shù)據(jù)倉庫獲取數(shù)據(jù)二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋大數(shù)據(jù)如何促進(jìn)電商物流的協(xié)同發(fā)展。2、(本題5分)說明大數(shù)據(jù)在游戲作弊檢測(cè)中的應(yīng)用。3、(本題5分)什么是數(shù)據(jù)概要,在大數(shù)據(jù)中的作用是什么?4、(本題5分)大數(shù)據(jù)如何助力工業(yè)4.0的發(fā)展?三、綜合分析題(本大題共5個(gè)小題,共25分)1、(本題5分)分析某在線旅游平臺(tái)的用戶投訴處理結(jié)果數(shù)據(jù),改進(jìn)服務(wù)質(zhì)量。2、(本題5分)研究某在線旅游平臺(tái)的用戶行程規(guī)劃數(shù)據(jù),提供個(gè)性化旅游建議。3、(本題5分)根據(jù)某金融機(jī)構(gòu)的客戶分層數(shù)據(jù),提供差異化服務(wù)。4、(本題5分)研究某城市的能源消耗數(shù)據(jù),制定節(jié)能減排策略。5、(本題5分)研究某社交媒體平臺(tái)的用戶標(biāo)簽數(shù)據(jù),進(jìn)行精準(zhǔn)內(nèi)容推送。四、編程題(本大題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論