廣州科技貿(mào)易職業(yè)學(xué)院《人工智能基礎(chǔ)與應(yīng)用B》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
廣州科技貿(mào)易職業(yè)學(xué)院《人工智能基礎(chǔ)與應(yīng)用B》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
廣州科技貿(mào)易職業(yè)學(xué)院《人工智能基礎(chǔ)與應(yīng)用B》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
廣州科技貿(mào)易職業(yè)學(xué)院《人工智能基礎(chǔ)與應(yīng)用B》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記。…………密………………封………………線…………第1頁,共2頁廣州科技貿(mào)易職業(yè)學(xué)院《人工智能基礎(chǔ)與應(yīng)用B》2024-2025學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在一個利用人工智能進行天氣預(yù)報的系統(tǒng)中,為了提高預(yù)測的精度和時效性,以下哪個因素可能是需要重點關(guān)注和改進的?()A.氣象數(shù)據(jù)的質(zhì)量和多樣性B.模型的復(fù)雜度和計算效率C.模型的融合和集成D.以上都是2、在人工智能的文本分類任務(wù)中,假設(shè)要對大量的新聞文章進行分類,如政治、經(jīng)濟、體育等。以下關(guān)于特征提取的方法,哪一項是最常用的?()A.使用詞袋模型,將文本表示為詞的頻率向量B.直接將原始文本作為輸入,不進行任何特征提取C.運用句法分析,提取句子的結(jié)構(gòu)特征D.僅考慮文本的標題,忽略正文內(nèi)容3、人工智能中的語音識別技術(shù)能夠?qū)⑷祟惖恼Z音轉(zhuǎn)換為文字。以下關(guān)于語音識別的敘述,不準確的是()A.語音識別系統(tǒng)通常包括聲學(xué)模型、語言模型和解碼器等部分B.語音識別的準確率受到語音質(zhì)量、口音和背景噪聲等因素的影響C.語音識別技術(shù)已經(jīng)非常完美,能夠準確識別各種口音和語速的語音D.深度學(xué)習(xí)的應(yīng)用顯著提高了語音識別的性能和準確率4、在人工智能的圖像分割任務(wù)中,假設(shè)要將一幅圖像中的不同物體準確地分割出來,以下關(guān)于圖像分割方法的描述,正確的是:()A.基于閾值的圖像分割方法簡單快速,但對復(fù)雜圖像的效果不佳B.基于區(qū)域的圖像分割方法能夠處理具有相似特征的區(qū)域,但容易出現(xiàn)過度分割C.基于邊緣檢測的圖像分割方法能夠準確地找到物體的邊緣,但對噪聲敏感D.以上圖像分割方法各有優(yōu)缺點,常常結(jié)合使用以提高分割效果5、人工智能在醫(yī)療領(lǐng)域的應(yīng)用越來越廣泛,例如疾病診斷和醫(yī)療影像分析。假設(shè)一個基于人工智能的醫(yī)療診斷系統(tǒng)正在研發(fā)中,以下關(guān)于該系統(tǒng)的描述,正確的是:()A.只要輸入足夠多的病例數(shù)據(jù),該系統(tǒng)就能準確診斷所有疾病,無需醫(yī)生干預(yù)B.該系統(tǒng)可以完全替代醫(yī)生的經(jīng)驗和判斷,因為人工智能算法更加精確C.雖然人工智能可以提供輔助診斷,但醫(yī)生的專業(yè)知識和臨床經(jīng)驗仍然至關(guān)重要D.人工智能醫(yī)療診斷系統(tǒng)的準確性不受數(shù)據(jù)質(zhì)量和多樣性的影響6、生成對抗網(wǎng)絡(luò)(GAN)是一種新興的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像。以下關(guān)于生成對抗網(wǎng)絡(luò)的描述,哪一項是不準確的?()A.GAN由生成器和判別器組成,兩者通過對抗訓(xùn)練不斷優(yōu)化B.生成器負責(zé)生成假樣本,判別器負責(zé)判斷樣本的真假C.GAN可以生成具有高度創(chuàng)造性和多樣性的新數(shù)據(jù)D.GAN的訓(xùn)練過程非常穩(wěn)定,不會出現(xiàn)模式崩潰等問題7、在人工智能的智能推薦系統(tǒng)中,假設(shè)要為用戶提供個性化的推薦服務(wù),以下關(guān)于推薦算法的描述,正確的是:()A.協(xié)同過濾算法只考慮用戶的歷史行為,不考慮物品的特征B.基于內(nèi)容的推薦算法能夠根據(jù)物品的屬性為用戶推薦相似的物品C.混合推薦算法結(jié)合了多種推薦方法的優(yōu)點,能夠提供更準確的推薦D.以上推薦算法都存在一定的局限性,無法滿足所有用戶的需求8、人工智能中的聯(lián)邦學(xué)習(xí)可以在保護數(shù)據(jù)隱私的前提下進行模型訓(xùn)練。假設(shè)多個機構(gòu)想要合作訓(xùn)練一個模型,但又不想共享原始數(shù)據(jù),以下哪個技術(shù)是聯(lián)邦學(xué)習(xí)的核心?()A.加密通信B.模型參數(shù)的加密共享和聚合C.分布式計算框架D.數(shù)據(jù)脫敏9、圖像識別是人工智能的常見應(yīng)用之一。假設(shè)要開發(fā)一個能夠準確識別各種動物的圖像識別系統(tǒng),以下關(guān)于圖像識別技術(shù)的描述,正確的是:()A.僅僅依靠像素級的特征提取就能實現(xiàn)高精度的圖像識別,無需考慮對象的形狀和結(jié)構(gòu)B.深度學(xué)習(xí)模型在圖像識別中總是能夠自動學(xué)習(xí)到最有效的特征,無需人工干預(yù)特征設(shè)計C.對于復(fù)雜的圖像場景,傳統(tǒng)的圖像識別方法比基于深度學(xué)習(xí)的方法更具優(yōu)勢D.圖像識別系統(tǒng)的性能不受圖像質(zhì)量、光照條件和拍攝角度等因素的影響10、自動駕駛是人工智能的一個具有挑戰(zhàn)性的應(yīng)用領(lǐng)域。以下關(guān)于自動駕駛的描述,不正確的是()A.自動駕駛分為不同的級別,從輔助駕駛到完全自動駕駛B.自動駕駛需要依靠傳感器、計算機視覺和決策算法等技術(shù)的協(xié)同工作C.目前的自動駕駛技術(shù)已經(jīng)非常成熟,可以在任何路況下安全可靠地運行D.自動駕駛面臨著法律、道德和技術(shù)等多方面的挑戰(zhàn)和問題11、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)要評估一個深度學(xué)習(xí)模型在乳腺X光影像診斷中的性能,以下哪個指標是最重要的?()A.準確率B.召回率C.F1值D.特異性12、人工智能在智能推薦系統(tǒng)中的應(yīng)用越來越普遍。假設(shè)要為一個電商平臺開發(fā)推薦系統(tǒng),以下關(guān)于考慮用戶興趣動態(tài)變化的方法,哪一項是最重要的?()A.定期重新訓(xùn)練模型,以反映用戶興趣的最新變化B.只根據(jù)用戶的歷史購買記錄進行推薦,不考慮近期行為C.為用戶推薦始終不變的熱門商品,不考慮其個人興趣D.隨機推薦商品,期望能夠滿足用戶的動態(tài)興趣13、人工智能中的可解釋性是一個重要的研究方向。假設(shè)要解釋一個深度學(xué)習(xí)模型的決策過程和輸出結(jié)果,以下關(guān)于模型可解釋性的描述,正確的是:()A.深度學(xué)習(xí)模型的內(nèi)部運作非常復(fù)雜,無法進行任何形式的解釋B.特征重要性分析可以幫助理解模型對輸入特征的依賴程度C.可視化技術(shù)只能展示模型的結(jié)構(gòu),不能解釋模型的決策邏輯D.模型可解釋性對于實際應(yīng)用沒有太大意義,只要模型性能好就行14、人工智能在教育領(lǐng)域的應(yīng)用逐漸興起。假設(shè)要開發(fā)一個智能輔導(dǎo)系統(tǒng),以下關(guān)于這種系統(tǒng)的描述,正確的是:()A.智能輔導(dǎo)系統(tǒng)能夠根據(jù)每個學(xué)生的學(xué)習(xí)進度和特點,提供個性化的學(xué)習(xí)方案B.智能輔導(dǎo)系統(tǒng)可以完全取代教師的作用,學(xué)生無需與教師進行交流C.智能輔導(dǎo)系統(tǒng)的效果只取決于系統(tǒng)的功能,與學(xué)生的學(xué)習(xí)態(tài)度和習(xí)慣無關(guān)D.智能輔導(dǎo)系統(tǒng)不需要考慮教育倫理和學(xué)生隱私保護問題15、在人工智能的研究中,模型的壓縮和量化技術(shù)可以減少模型的參數(shù)和計算量。以下關(guān)于模型壓縮和量化的敘述,不準確的是()A.可以通過剪枝、量化和低秩分解等方法實現(xiàn)模型壓縮B.模型壓縮和量化會導(dǎo)致模型性能的一定損失,但可以在可接受范圍內(nèi)提高計算效率C.模型壓縮和量化技術(shù)只適用于小型模型,對于大型復(fù)雜模型效果不佳D.這些技術(shù)對于在資源受限的設(shè)備上部署人工智能模型具有重要意義16、在人工智能的研究中,強化學(xué)習(xí)被廣泛應(yīng)用于智能體的決策和優(yōu)化問題。假設(shè)一個智能機器人需要在復(fù)雜的環(huán)境中學(xué)習(xí)如何行走并避開障礙物,以最快的速度到達目標位置。在這種情況下,以下哪種強化學(xué)習(xí)算法能夠使機器人更快地學(xué)習(xí)到有效的策略,同時具有較好的泛化能力?()A.Q-learningB.SARSAC.策略梯度算法D.蒙特卡羅方法17、在人工智能的圖像分割任務(wù)中,需要將圖像劃分成不同的區(qū)域。假設(shè)要對醫(yī)學(xué)影像中的病變區(qū)域進行分割,以下關(guān)于圖像分割技術(shù)的描述,正確的是:()A.傳統(tǒng)的圖像分割方法在處理復(fù)雜的醫(yī)學(xué)影像時效果總是優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的全卷積神經(jīng)網(wǎng)絡(luò)(FCN)在醫(yī)學(xué)圖像分割中能夠自動學(xué)習(xí)特征,具有很大的潛力C.圖像分割的結(jié)果只取決于所使用的算法,與圖像的質(zhì)量和分辨率無關(guān)D.圖像分割技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不需要進一步的研究和改進18、人工智能在智能家居領(lǐng)域的應(yīng)用不斷豐富。假設(shè)一個智能家居系統(tǒng)要利用人工智能實現(xiàn)自動化控制,以下關(guān)于其應(yīng)用的描述,哪一項是不正確的?()A.根據(jù)家庭成員的習(xí)慣和環(huán)境條件,自動調(diào)整燈光、溫度和家電設(shè)備B.利用語音識別和自然語言處理技術(shù),實現(xiàn)與用戶的自然交互C.人工智能可以完全理解用戶的所有需求和意圖,不會出現(xiàn)誤解D.結(jié)合傳感器數(shù)據(jù)和機器學(xué)習(xí)算法,實現(xiàn)能源的高效管理和節(jié)約19、在人工智能的語音識別任務(wù)中,為了提高在嘈雜環(huán)境下的識別準確率,以下哪種技術(shù)或方法可能會被重點研究和應(yīng)用?()A.聲學(xué)模型的改進B.噪聲抑制技術(shù)C.多模態(tài)信息融合D.以上都是20、在人工智能的圖像識別任務(wù)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用。假設(shè)要設(shè)計一個用于識別手寫數(shù)字的卷積神經(jīng)網(wǎng)絡(luò),以下哪個因素對于提高識別準確率至關(guān)重要?()A.增加卷積層的數(shù)量B.減少池化層的大小C.選擇合適的激活函數(shù)D.增加全連接層的神經(jīng)元數(shù)量21、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)我們要利用深度學(xué)習(xí)模型診斷肺部CT影像中的結(jié)節(jié),以下關(guān)于模型訓(xùn)練的說法,哪一項是正確的?()A.可以使用少量標注數(shù)據(jù)獲得準確的診斷結(jié)果B.模型的泛化能力對于不同醫(yī)院的數(shù)據(jù)不重要C.數(shù)據(jù)增強技術(shù)可以提高模型的魯棒性D.不需要對模型進行驗證和評估22、人工智能在金融領(lǐng)域的應(yīng)用包括風(fēng)險評估、欺詐檢測等。假設(shè)一家銀行要利用人工智能進行客戶信用評估。以下關(guān)于人工智能在金融領(lǐng)域應(yīng)用的描述,哪一項是不正確的?()A.可以通過分析客戶的交易記錄、信用歷史等多維度數(shù)據(jù)來評估信用風(fēng)險B.人工智能模型能夠自適應(yīng)地學(xué)習(xí)和更新,以適應(yīng)不斷變化的金融市場環(huán)境C.人工智能的決策結(jié)果完全可靠,不需要人類專家的監(jiān)督和審核D.可以幫助金融機構(gòu)降低成本,提高風(fēng)險控制的準確性和效率23、在人工智能的情感分析任務(wù)中,比如分析社交媒體上用戶對某一產(chǎn)品的態(tài)度是積極還是消極,以下哪種特征提取方法可能會產(chǎn)生重要影響?()A.基于詞袋模型B.基于詞嵌入C.基于語法結(jié)構(gòu)D.基于語義網(wǎng)絡(luò)24、在人工智能的藥物研發(fā)中,機器學(xué)習(xí)可以輔助藥物分子的設(shè)計和篩選。假設(shè)要開發(fā)一種治療特定疾病的新藥,以下哪種機器學(xué)習(xí)方法可能最有助于找到潛在的有效分子結(jié)構(gòu)?()A.分類算法B.回歸分析C.聚類分析D.強化學(xué)習(xí)25、人工智能中的“膠囊網(wǎng)絡(luò)(CapsuleNetwork)”的主要優(yōu)勢是?()A.對姿態(tài)和變形的魯棒性B.減少參數(shù)數(shù)量C.提高訓(xùn)練速度D.增強可解釋性二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明局部可解釋模型-解釋(LIME)的原理。2、(本題5分)談?wù)勅斯ぶ悄茉谥悄茇攧?wù)管理投資決策中的應(yīng)用。3、(本題5分)解釋人工智能中的倫理和社會問題。4、(本題5分)說明卷積神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)分析一個利用人工智能進行古籍?dāng)?shù)字化整理的項目,討論其效率和準確性。2、(本題5分)分析一個利用人工智能進行民間藝術(shù)文化產(chǎn)業(yè)發(fā)展預(yù)測的實例,討論其預(yù)測依據(jù)和產(chǎn)業(yè)指導(dǎo)意義。3、(本題5分)研究一個使用人工智能的智能舞蹈比賽組織與評分系統(tǒng),分析其如何組織舞蹈比賽和進行公平評分。4、(本題5分)分析一個利用人工智能進行書法字體生成的項目,討論其字體風(fēng)格和應(yīng)用場景。5、(本題5分)考察一個基于人工智

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論