難點解析北師大版9年級數(shù)學上冊期末試題(精練)附答案詳解_第1頁
難點解析北師大版9年級數(shù)學上冊期末試題(精練)附答案詳解_第2頁
難點解析北師大版9年級數(shù)學上冊期末試題(精練)附答案詳解_第3頁
難點解析北師大版9年級數(shù)學上冊期末試題(精練)附答案詳解_第4頁
難點解析北師大版9年級數(shù)學上冊期末試題(精練)附答案詳解_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數(shù)學上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、如圖,菱形ABCD中,∠ABC=60°,AB=4,E是邊AD上一動點,將△CDE沿CE折疊,得到△CFE,則△BCF面積的最大值是(

)A.8 B. C.16 D.2、一元二次方程,配方后可形為(

)A. B.C. D.3、已知點都在反比例函數(shù)的圖象上,且,則下列結(jié)論一定正確的是(

)A. B. C. D.4、在一次酒會上,每兩人都只碰一次杯,如果一共碰杯55次,則參加酒會的人數(shù)為(

)A.9人 B.10人 C.11人 D.12人5、關于x的一元二次方程根的情況,下列說法正確的是(

)A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.無實數(shù)根 D.無法確定6、若直角三角形的兩邊長分別是方程的兩根,則該直角三角形的面積是(

)A.6 B.12 C.12或 D.6或二、多選題(6小題,每小題2分,共計12分)1、一個兩位數(shù),十位數(shù)字與個位數(shù)字之和是5,把這個數(shù)的個位數(shù)字與十位數(shù)字對調(diào)后,所得的新的兩位數(shù)與原來的兩位數(shù)的乘積是736,原來的兩位數(shù)是(

)A.23 B.32 C. D.2、用配方法解下列方程,配方錯誤的是(

)A.化為 B.化為C.化為 D.化為3、下列命題中的真命題是(

)A.矩形的對角線相等 B.對角線相等的四邊形是矩形C.菱形的對角線互相垂直平分 D.對角線互相垂直的四邊形是菱形4、下列方程中,是一元二次方程的是()A. B. C. D.5、下列多邊形中,一定不相似的是(

)A.兩個矩形 B.兩個菱形 C.兩個正方形 D.兩個平行四邊形6、圖,在邊長為4的正方形ABCD中,點E,F(xiàn)分別是邊BC,AB的中點,連接AE,DF交于點N,將沿AE翻折,得到,AG交DF于點M,延長EG交AD的延長線于點H,連接CG,ME,取ME的中點為點O,連接NO,GO.則以下結(jié)論正確的有(

)A. B. C. D.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、已知一元二次方程ax2+bx+c=0(a≠0),下列結(jié)論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個不相等的實數(shù)根;③若b=2a+3c,則方程有兩個不相等的實數(shù)根;④若m是方程的一個根,則一定有b2-4ac=(2am+b)2成立.其中結(jié)論正確的序號是__________.2、某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元,由于疫情,為了擴大銷售量,盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件.若商場平均每天銷售這種襯衫的盈利要達到1200元,則每件襯衫應降價多少元?設每件襯衫降價x元,由題意列得方程______.3、一個正方形的面積為,則它的對角線長為________.4、如圖,點E為矩形ABCD的邊BC長上的一點,作DF⊥AE于點F,且滿足DF=AB.下面結(jié)論:①△DEF≌△DEC;②S△ABE=S△ADF;③AF=AB;④BE=AF.其中正確的結(jié)論是_____.5、如圖,在平面直角坐標系中,一條過原點的直線與反比例函數(shù)的圖象x相交于兩點,若,,則該反比例函數(shù)的表達式為______.6、如圖,在矩形紙片ABCD中,AB=12,AD=5,P為DC邊上的動點(點P不與點D,C重合),將紙片沿AP折疊(1)當四邊形ADPD′是正方形時,CD′的長為___.(2)當CD′的長最小時,PC的長為___.7、如圖,在矩形ABCD中,AB=6,BC=8,點E、F分別是邊AB、BC上的動點,且EF=4,點G是EF的中點,AG、CG,則四邊形AGCD面積的最小值為_______.8、如圖,D是的邊BC上一點,,,.如果的面積為15,那么的面積為______.四、解答題(6小題,每小題10分,共計60分)1、已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,當其中一點到達終點后,另外一點也隨之停止運動.(1)如果P、Q分別從A、B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?(2)在(1)中,△PQB的面積能否等于7cm2?請說明理由.2、發(fā)現(xiàn):四個連續(xù)的整數(shù)的積加上是一個整數(shù)的平方.驗證:(1)的結(jié)果是哪個數(shù)的平方?(2)設四個連續(xù)的整數(shù)分別為,試證明他們的積加上是一個整數(shù)的平方;延伸:(3)有三個連續(xù)的整數(shù),前兩個整數(shù)的平方和等于第三個數(shù)的平方,試求出這三個整數(shù)分別是多少.3、如圖,一次函數(shù)y1=ax+b與反比例函數(shù)的圖象相交于A(2,8),B(8,2)兩點,連接AO,BO,延長AO交反比例函數(shù)圖象于點C.(1)求一次函數(shù)y1的表達式與反比例函數(shù)y2的表達式;(2)當y1<y2,時,直接寫出自變量x的取值范圍;(3)點P是x軸上一點,當時,請求出點P的坐標.4、如圖,在平面直角坐標系中,一次函數(shù)由函數(shù)平移得到,且與函數(shù)的圖象交于點.(1)求一次函數(shù)的表達式;(2)已知點,過點作平行于軸的直線,交直線于點,交函數(shù)的圖象于點.當時,直接寫出的取值范圍.5、解下列方程:(1);(2)6、如圖,矩形ABCD中,AB=2cm,BC=3cm,點E從點B沿BC以2cm/s的速度向點C移動,同時點F從點C沿CD以1cm/s的速度向點D移動,當E,F(xiàn)兩點中有一點到達終點時,另一點也停止運動.當△AEF是以AF為底邊的等腰三角形時,求點E運動的時間.-參考答案-一、單選題1、A【解析】【分析】由三角形底邊BC是定長,所以當△BCF的高最大時,△BCF的面積最大,即當FC⊥BC時,三角形有最大面積.【詳解】解:在菱形ABCD中,BC=CD=AB=4又∵將△CDE沿CE折疊,得到△CFE,∴FC=CD=4由此,△BCF的底邊BC是定長,所以當△BCF的高最大時,△BCF的面積最大,即當FC⊥BC時,三角形有最大面積∴△BCF面積的最大值是故選:A.【考點】本題考查菱形的性質(zhì)和折疊的性質(zhì),掌握三角形面積的計算方法和菱形的性質(zhì)正確推理計算是解題關鍵.2、A【解析】【分析】把常數(shù)項移到方程右邊,再把方程兩邊加上16,然后把方程作邊寫成完全平方形式即可【詳解】解:x2-8x=2,x2-8x+16=18,(x-4)2=18.故選:A.【考點】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.3、C【解析】【分析】根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】反比例函數(shù)中,=-2020<0,圖象位于二、四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故選:C.【考點】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<0時,圖象位于二四象限是解題關鍵.4、C【解析】【分析】設參加酒會的人數(shù)為x人,每人碰杯次數(shù)為次,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【詳解】設參加酒會的人數(shù)為x人,依題可得:x(x-1)=55,化簡得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案為C.【考點】考查了一元二次方程的應用,解題的關鍵是根據(jù)題中的等量關系列出方程.5、A【解析】【分析】先計算判別式,再進行配方得到△=(k-1)2+4,然后根據(jù)非負數(shù)的性質(zhì)得到△>0,再利用判別式的意義即可得到方程總有兩個不相等的實數(shù)根.【詳解】△=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程總有兩個不相等的實數(shù)根.故選:A.【考點】本題考查的是根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的實數(shù)根;②當△=0時,方程有兩個相等的實數(shù)根;③當△<0時,方程無實數(shù)根.上面的結(jié)論反過來也成立.6、D【解析】【分析】根據(jù)題意,先將方程的兩根求出,然后對兩根分別作為直角三角形的直角邊和斜邊進行分情況討論,最終求得該直角三角形的面積即可.【詳解】解方程得,當3和4分別為直角三角形的直角邊時,面積為;當4為斜邊,3為直角邊時根據(jù)勾股定理得另一直角邊為,面積為;則該直角三角形的面積是6或,故選:D.【考點】本題主要考查了解一元二次方程及直角三角形直角邊斜邊的確定、直角三角形的面積求解,熟練掌握解一元二次方程及勾股定理是解決本題的關鍵.二、多選題1、AB【解析】【分析】設原來的兩位數(shù)十位上的數(shù)字為,則個位上的數(shù)字為,根據(jù)所得到的新兩位數(shù)與原來的兩位數(shù)的乘積為736,可列出方程求解即可.【詳解】解:設原來的兩位數(shù)十位上的數(shù)字為,則個位上的數(shù)字為,依題意可得:,解得:,,當時,,符合題意,原來的兩位數(shù)是23,當時,,符合題意,原來的兩位數(shù)是32,∴原來的兩位數(shù)是23或32,故選AB.【考點】本題考查了一元二次方程的應用,解題的關鍵是能正確用每一數(shù)位上的數(shù)字表示這個兩位數(shù).2、BD【解析】【分析】根據(jù)配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1,(3)等式兩邊同時加上一次項系數(shù)一半的平方即可得到結(jié)論.【詳解】A.化為,正確,不符合題意;B.化為,錯誤,符合題意;C.化為,正確,不符合題意;D.化為,錯誤,符合題意.故選:BD.【考點】此題考查了配方法解一元二次方程,屬于基礎題,熟練掌握配方法的一般步驟是解題關鍵.3、AC【解析】【分析】根據(jù)菱形的判定與性質(zhì),矩形的判定和性質(zhì)即可進行判斷.【詳解】解:A、矩形的對角線相等,是真命題,符合題意;B、對角線相等的平行四邊形是矩形,是假命題,不符合題意;C、菱形的對角線互相垂直平分,是真命題,符合題意;D、對角線互相垂直平分的四邊形是菱形,是假命題,不符合題意;故選AC.【考點】本題考查了,矩形的判定,菱形的判定與性質(zhì),解題的關鍵是掌握所學的定理.4、BCD【解析】【分析】本題根據(jù)一元二次方程的定義解答.一元二次方程必須滿足四個條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項系數(shù)不為0;(3)是整式方程;(4)含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】解:A

,分母中含有未知數(shù),是分式方程;

B

x2=x+1,是一元二次方程;C

7x2+3=0,是一元二次方程;

D

是一元二次方程.故選:BCD.【考點】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是2.5、ABD【解析】【分析】利用相似多邊形的對應邊的比相等,對應角相等分析.【詳解】解:要判斷兩個多邊形是否相似,需要看對應角是否相等,對應邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對應角、對應邊的比不一定相等,故不一定相似,選項A、B、D符合題意;而兩個正方形,對應角都是90°,對應邊的比也都相等,故一定相似,選項C不符合題意.故選:ABD.【考點】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應邊的比相等,對應角相等.兩個條件必須同時具備.6、ABC【解析】【詳解】解:∵四邊形ABCD是正方形,∴AD=AB=BC,∠DAB=∠B=90°,∴∠ADF+∠AFD=90°,∵點E、F分別是邊BC、AB的中點,∴AF=AB,BE=EC=BC,∴AF=BE,∴△DAF≌△ABE(SAS),∴∠BAE=∠ADF,∴∠BAE+∠AFD=90°,∴∠ANF=180°-(∠BAE+∠AFD)=90°,∴∠AND=90°,故A正確;∵四邊形ABCD是正方形,∴AD∥BC,∴∠DAE=∠AEB,由折疊得:∠AEB=∠AEG,∴∠DAE=∠AEG,∴AH=EH,故B正確;由折疊得:∠AEB=∠AEG=(180°-∠GEC),GE=BE=EC,∴∠EGC=∠ECG=(180°-∠GEC),∴.∠AEB=∠GCE,∴AE∥CG,故C正確;∵O為ME中點,∴,,∴+,∵+-,且△AGE≌△DAF,∴+-,∵∠AND=90°=∠ANF,∠FAN=∠MAN,AN=AN,∴△ANF≌△ANM,∴+-,∴,只有M是邊DN中點的時,D才成立,故D錯誤;故選A、B、C.【考點】本題考查正方形和折疊的綜合應用,熟練掌握正方形的性質(zhì)、折疊的性質(zhì)、三角形全等的判定和性質(zhì)、三角形內(nèi)角和定理、平行線的判定等是解題關鍵.三、填空題1、①③④【解析】【分析】利用根與系數(shù)的關系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根,故③正確.若m是方程ax2+bx+c=0的一個根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系及根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數(shù)根;當Δ=0,方程有兩個相等的實數(shù)根;當Δ<0,方程沒有實數(shù)根.2、【解析】【分析】設每件襯衫降價x元,根據(jù)每件襯衫每降價1元,商場平均每天可多售出2件可得銷售量為,則每件襯衫的利潤為,根據(jù)銷售量乘以每件襯衫的利潤等于1200元,列出一元二次方程即可【詳解】解:設每件襯衫降價x元,根據(jù)題意得,故答案為:【考點】本題考查了一元二次方程的應用,根據(jù)題意列出一元二次方程是解題的關鍵.3、【解析】【分析】根據(jù)正方形的面積求得正方形的邊長,再由勾股定理求得正方形的對角線長即可.【詳解】∵正方形的面積為,∴正方形的邊長為9cm,∴正方形對角線的長為.故答案為.【考點】本題考查了正方形的性質(zhì),熟知正方形的性質(zhì)是解決問題的關鍵.4、①②④.【解析】【分析】證明Rt△DEF≌Rt△DEC得出①正確;在證明△ABE≌△DFA得出S△ABE=S△ADF;②正確;得出BE=AF,④正確,③不正確;即可得出結(jié)論.【詳解】解:四邊形是矩形,,在和中,,①正確在和中,;②正確,④正確,③不正確故答案為:①②④.【考點】本題考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)等知識,熟練掌握矩形的性質(zhì),證明三角形全等是解題的關鍵.5、y=.【解析】【分析】由正比例函數(shù)與反比例函數(shù)的兩個交點關于原點對稱,可得m2-7=2,由點A在第三象限可求m的值,即可求點A坐標,代入解析式可求解.【詳解】解:∵一條過原點的直線與反比例函數(shù)的圖象相交于A、B兩點,∴點A與點B關于原點對稱,∴m2-7=2,∴m=±3,∵點A在第三象限,∴m<0,∴m=-3,∴點A(-3,-2),∵點A在反比例函數(shù)的圖象上,∴k=-3×(-2)=6,∴反比例函數(shù)的表達式為y=,故答案為:y=.【考點】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,掌握正比例函數(shù)與反比例函數(shù)的兩個交點關于原點對稱是本題的關鍵.6、

【解析】【分析】(1)根據(jù)四邊形是正方形,得到從而得到再利用勾股定理求解即可得到答案;(2)如圖:連接,運用矩形的性質(zhì)和折疊的性質(zhì)求出的最小值,再設,則,最后在中運用勾股定理解答即可【詳解】解:(1)如圖所示,∵四邊形是正方形∴∵∴∵四邊形ABCD是矩形∴,∠B=90°∴(2)如圖:連接,當點在上時,有最小值.∵四邊形是矩形,,,∴,,∴.由折疊性質(zhì),得,,∴的最小值.設,則.在中,,即,解得,∴的長為.故答案為:.【考點】本題主要考查矩形的性質(zhì)和折疊的性質(zhì),正方形的性質(zhì),勾股定理,根據(jù)矩形的性質(zhì)和折疊的性質(zhì)確定的最小值成為解答本題的關鍵.7、38【解析】【分析】根據(jù)題目要求,要使四邊形AGCD的面積最小,因為的面積固定,只需使的面積最小即可,即的高最小即可,又在中,,則BG=2,高的最小值為點B到AC的距離減去BG的長度,則可求解.【詳解】依題意,在中,為EF的中點,,,點G在以B為圓心,2為半徑的圓與長方形重合的弧上運動,,要使四邊形AGCD的面積最小,則B所在直線垂直線段AC,又,點B到AC的距離為,此時點G到AC的距離為,故的最小面積為,,故答案為:38.【考點】本題考查了動點問題中四邊形的最小面積問題,利用勾股定理,直角三角形中線的性質(zhì),三角形等積法求高等性質(zhì)定理進行求解,對于相關性質(zhì)定理的熟練運用是解題的關鍵.8、5【解析】【分析】先證明△ACD∽△BCA,再根據(jù)相似三角形的性質(zhì)得到:△ACD的面積:△ABC的面積為1:4,再結(jié)合△ABD的面積為15,然后求出△ACD的面積即可.【詳解】∵,,∴,∵,,∴,∴的面積,故答案是:5.【考點】本題主要考查了相似三角形的判定和性質(zhì)、掌握相似三角形的面積比等于相似比的平方是解答本題的關鍵.四、解答題1、(1)1秒;(2)不可能,見解析【解析】【分析】(1)經(jīng)過x秒鐘,△PBQ的面積等于4cm2,根據(jù)點P從A點開始沿AB邊向點B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動,表示出BP和BQ的長可列方程求解;(2)看△PBQ的面積能否等于7cm2,只需令×2x(5﹣x)=7,化簡該方程后,判斷該方程的△與0的關系,大于或等于0則可以,否則不可以.【詳解】解:(1)設經(jīng)過x秒以后△PBQ面積為4cm2,根據(jù)題意得(5﹣x)×2x=4,整理得:x2﹣5x+4=0,解得:x=1或x=4(舍去).答:1秒后△PBQ的面積等于4cm2;2、(1)3×4×5×6+1的結(jié)果是19的平方;(2)見解析;(3)這三個連續(xù)的整數(shù)分別是3、4、5或-1、0、1【解析】【分析】(1)按照有理數(shù)的乘法計算出結(jié)果,即可判斷是19的平方;(2)設出四個連續(xù)整數(shù),根據(jù)題意得到式子,對式子進行轉(zhuǎn)化,利用完全平方公式得到一個整數(shù)的平方;(3)設中間的整數(shù)是x,則另外兩個整數(shù)分別為x-1、x+1,根據(jù)“前兩個整數(shù)的平方和等于第三個數(shù)的平方”,列出方程求解即可.【詳解】(1)3×4×5×6+1=361=192,即3×4×5×6+1的結(jié)果是19的平方;(2)設這四個連續(xù)整數(shù)依次為:n-1,n,n+1,n+2,則(n-1)n(n+1)(n+2)+1,=[(n-1)(n+2)][n(n+1)]+1=(n2+n-2)(n2+n)+1=(n2+n)2-2(n2+n)+1=(n2+n-1)2.故四個連續(xù)整數(shù)的積加上1是一個整數(shù)的平方;(3)設中間的整數(shù)是x,則第一個是x-1,第三個是x+1,根據(jù)題意得(x-1)2+x2=(x+1)2解之得x1=4,x2=0,則x-1=3,x+1=5,或x-1=-1,x+1=1,x=0,答:這三個整數(shù)分別是3、4、5或-1、0、1.【考點】本題考查了一元二次方程的應用,因式分解的應用;利用完全平方公式得到一個整數(shù)的平方是正確解答本題的關鍵.3、(1),;(2)當y1<y2,時,自變量x的取值范圍為x>8或0<x<2;(3)點P的坐標為(3,0)或(-3,0).【解析】【分析】(1)利用待定系數(shù)法確定解析式即可;(2)利用數(shù)形結(jié)合的思想,分析兩個函數(shù)圖象的位置,根據(jù)交點的橫坐標確定滿足條件的解集即可.(3)先利用分割法求出的面積,利用求出的面積,由面積公式列式求解即可.【詳解】解:(1)將,代入中,得解得:∴反比例函數(shù)y2的表達式為:將,代入中,得:解得:∴一次函數(shù)y1的表達式為:(2)由圖象可知,當時,反比例函數(shù)圖象應在一次函數(shù)圖象上方∴自變量x的取值范圍為:或(3)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論