




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,四邊形ABCD是平行四邊形,下列結(jié)論中錯誤的是()A.當(dāng)?ABCD是矩形時,∠ABC=90° B.當(dāng)?ABCD是菱形時,AC⊥BDC.當(dāng)?ABCD是正方形時,AC=BD D.當(dāng)?ABCD是菱形時,AB=AC2、如圖,把正方形紙片ABCD沿對邊中點(diǎn)所在的直線對折后展開,折痕為MN,再過點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,折痕為BE,若AB的長為2,則FM的長為()A.2 B. C. D.13、如圖,將矩形ABCD沿對角線AC翻折,點(diǎn)B落在點(diǎn)F處,F(xiàn)C交AD于點(diǎn)E.若AB=4,BC=8,則圖中陰影部分的面積為()A.8 B.10 C.12.5 D.7.54、菱形ABCD的對角線AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.85、下列說法正確的是()A.平行四邊形的對角線互相平分且相等 B.矩形的對角線相等且互相平分C.菱形的對角線互相垂直且相等 D.正方形的對角線是正方形的對稱軸第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,四邊形和四邊形都是邊長為4的正方形,點(diǎn)是正方形對角線的交點(diǎn),正方形繞點(diǎn)旋轉(zhuǎn)過程中分別交,于點(diǎn),,則四邊形的面積為______.2、如圖所示,正方形ABCD的面積為6,△CDE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對角線BD上有一動點(diǎn)K,則KA+KE的最小值為_____________.3、如圖,△ABC中,AC=BC=3,AB=2,將它沿AB翻折得到△ABD,點(diǎn)P、E、F分別為線段AB、AD、DB上的動點(diǎn),則PE+PF的最小值是_____.4、如圖,M,N分別是矩形ABCD的邊AD,AB上的點(diǎn),將矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,連接MC,若AB=8,AD=16,BE=4,則MC的長為________.5、如圖,平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O,M、N分別為AB、BC的中點(diǎn),若OM=1.5,ON=1,則平行四邊形ABCD的周長是________.三、解答題(5小題,每小題10分,共計50分)1、如圖,在Rt△ABC中,∠ACB=90°.
(1)作AB的垂直平分線l,交AB于點(diǎn)D,連接CD,分別作∠ADC,∠BDC的平分線,交AC,BC于點(diǎn)E,F(xiàn)(尺規(guī)作圖,不寫作法,保作圖痕跡);(2)求證:四邊形CEDF是矩形.2、如圖,△ABC中,點(diǎn)D是邊AC的中點(diǎn),過D作直線PQ∥BC,∠BCA的平分線交直線PQ于點(diǎn)E,點(diǎn)G是△ABC的邊BC延長線上的點(diǎn),∠ACG的平分線交直線PQ于點(diǎn)F.求證:四邊形AECF是矩形.3、如圖,四邊形ABCD是一個菱形綠草地,其周長為40m,∠ABC=120°,在其內(nèi)部有一個矩形花壇EFGH,其四個頂點(diǎn)恰好在菱形ABCD各邊中點(diǎn),現(xiàn)準(zhǔn)備在花壇中種植茉莉花,其單價為30元/m2,則需投資資金多少元?(取1.732)4、如圖,在Rt△ABC中,∠ACB=90°,D為AB中點(diǎn),.(1)試判斷四邊形BDCE的形狀,并證明你的結(jié)論;(2)若∠ABC=30°,AB=4,則四邊形BDCE的面積為.5、如圖所示,在△ABC中,AD是邊BC上的高,CE是邊AB上的中線,G是CE的中點(diǎn),AB=2CD,求證:DG⊥CE.
-參考答案-一、單選題1、D【解析】【分析】由矩形的四個角是直角可判斷A,由菱形的對角線互相垂直可判斷B,由正方形的對角線相等可判斷C,由菱形的四條邊相等可判斷D,從而可得答案.【詳解】解:當(dāng)?ABCD是矩形時,∠ABC=90°,正確,故A不符合題意;當(dāng)?ABCD是菱形時,AC⊥BD,正確,故B不符合題意;當(dāng)?ABCD是正方形時,AC=BD,正確,故C不符合題意;當(dāng)?ABCD是菱形時,AB=BC,故D符合題意;故選D【點(diǎn)睛】本題考查的是矩形,菱形,正方形的性質(zhì),熟練的記憶矩形,菱形,正方形的性質(zhì)是解本題的關(guān)鍵.2、B【解析】【分析】由折疊的性質(zhì)可得,∠BMN=90°,F(xiàn)B=AB=2,由此利用勾股定理求解即可.【詳解】解:∵把正方形紙片ABCD沿對邊中點(diǎn)所在的直線對折后展開,折痕為MN,AB=2,∴,∠BMN=90°,∵四邊形ABCD為正方形,AB=2,過點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,∴FB=AB=2,則在Rt△BMF中,,故選B.【點(diǎn)睛】本題主要考查了正方形與折疊,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).3、B【解析】【分析】利用折疊的性質(zhì)可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,進(jìn)而可得出AE=CE,根據(jù)矩形性質(zhì)可得AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面積公式即可求出△ACE的面積,則可得出答案.【詳解】解:由折疊的性質(zhì),∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四邊形ABCD為矩形,∴AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,根據(jù)勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴圖中陰影部分的面積=S△ACEAE?AB=×5×4=10.故選:B【點(diǎn)睛】本題考查了翻折變換、矩形的性質(zhì)、勾股定理以及三角形的面積,利用勾股定理求出AE的長是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)中位線定理可得對角線AC的長,再由菱形面積等于對角線乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點(diǎn),EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì)與中位線定理,熟練掌握中位線定理和菱形面積公式是關(guān)鍵.5、B【解析】【分析】根據(jù)平行四邊形、矩形、菱形、正方形的性質(zhì)定理判斷即可.【詳解】解:平行四邊形的對角線互相平分,不一定相等,A錯誤;矩形的對角線相等且互相平分,B正確;菱形的對角線互相垂直,不一定相等,C錯誤;正方形的對角線所在的直線是正方形的對稱軸,D錯誤;故選:B.【點(diǎn)睛】本題考查了命題的真假判斷,掌握平行四邊形、矩形、菱形、正方形的性質(zhì)是解題的關(guān)鍵.二、填空題1、4【解析】【分析】過點(diǎn)O作OG⊥AB,垂足為G,過點(diǎn)O作OH⊥BC,垂足為H,把四邊形的面積轉(zhuǎn)化為正方形OGBH的面積,等于正方形ABCD面積的.【詳解】如圖,過點(diǎn)O作OG⊥AB,垂足為G,過點(diǎn)O作OH⊥BC,垂足為H,∵四邊形ABCD的對角線交點(diǎn)為O,∴OA=OC,∠ABC=90°,AB=BC,∴OG∥BC,OH∥AB,∴四邊形OGBH是矩形,OG=OH=,∠GOH=90°,∴=4,∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,∴∠FOH=∠EOG,∵∠OGE=∠OHF=90°,OG=OH,∴△OGE≌△OHF,∴,∴,∴=4,故答案為:4.【點(diǎn)睛】本題考查了正方形的性質(zhì),三角形的全等與性質(zhì),補(bǔ)形法計算面積,熟練掌握正方形的性質(zhì),靈活運(yùn)用補(bǔ)形法計算面積是解題的關(guān)鍵.2、【解析】【分析】根據(jù)正方形的性質(zhì)可知C、A關(guān)于BD對稱,推出CK=AK,推出EK+AK≥CE,根據(jù)等邊三角形性質(zhì)推出CE=CD,根據(jù)正方形面積公式求出CD即可.【詳解】解:∵四邊形ABCD是正方形,∴C、A關(guān)于BD對稱,即C關(guān)于BD的對稱點(diǎn)是A,如圖,連接CK,則CK=AK,∴EK+CK≥CE,∵△CDE是等邊三角形,∴CE=CD,∵正方形ABCD的面積為6,∴CD=,∴KA+KE的最小值為,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對稱-最短路徑問題,等邊三角形的性質(zhì)等知識點(diǎn)的應(yīng)用,解此題的關(guān)鍵是確定K的位置和求出KA+KE的最小值是CE.3、##【解析】【分析】首先證明四邊四邊形ABCD是菱形,作出F關(guān)于AB的對稱點(diǎn)M,再過M作ME′⊥AD,交AB于點(diǎn)P′,此時P′E′+P′F最小,求出ME即可.【詳解】解:作出F關(guān)于AB的對稱點(diǎn)M,再過M作ME′⊥AD,交AB于點(diǎn)P′,此時P′E′+P′F最小,此時P′E′+P′F=ME′,過點(diǎn)A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四邊形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小為.故答案為:.【點(diǎn)睛】本題考查翻折變換,等腰三角形的性質(zhì),軸對稱?最短問題等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.4、10【解析】【分析】過E作EF⊥AD于F,根據(jù)矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,得出△ANM≌△ENM,可得AM=EM,根據(jù)矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4,根據(jù)勾股定理,即,解方程m=10即可.【詳解】解:過E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4在Rt△FEM中,根據(jù)勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點(diǎn)睛】本題考查折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理,掌握折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理是解題關(guān)鍵.5、10【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得BO=DO,AD=BC,AB=CD,再由條件M、N分別為AB、BC的中點(diǎn)可得MO是△ABD的中位線,NO是△BCD的中位線,再根據(jù)三角形中位線定理可得AD、DC的長.【詳解】解:∵四邊形ABCD是平行四邊形,∴BO=DO,AD=BC,AB=CD,∵M(jìn)、N分別為AB、BC的中點(diǎn),∴MO=AD,NO=CD,∵OM=1.5,ON=1,∴AD=3,CD=2,∴平行四邊形ABCD的周長是:3+3+2+2=10,故答案為:10.【點(diǎn)睛】此題主要考查了平行四邊形的性質(zhì),以及中位線定理,關(guān)鍵是掌握平行四邊形對邊相等,對角線互相平分.三、解答題1、(1)見解析(2)見解析【分析】(1)利用垂直平分線和角平分線的尺規(guī)作圖法,進(jìn)行作圖即可.(2)利用直角三角形斜邊中線性質(zhì),以及角平分線的性質(zhì)直接證明與都是,最后加上,即可證明結(jié)論.【詳解】(1)答案如下圖所示:
分別以A、B兩點(diǎn)為圓心,以大于長為半徑畫弧,連接弧的交點(diǎn)的直線即為垂直平分線l,其與AB的交點(diǎn)為D,以點(diǎn)D為圓心,適當(dāng)長為半徑畫弧,分別交DA于點(diǎn)M,交CD于點(diǎn)N,交BD于點(diǎn)T,然后分別以點(diǎn)M,N為圓心,大于為半徑畫弧,連接兩弧交點(diǎn)與D點(diǎn)的連線交AC于點(diǎn)E,同理分別以點(diǎn)T,N為圓心,大于為半徑畫弧,連接兩弧交點(diǎn)與D點(diǎn)的連線交BC于點(diǎn)F.(2)證明:點(diǎn)是AB與其垂直平分線l的交點(diǎn),點(diǎn)是AB的中點(diǎn),是Rt△ABC上的斜邊的中線,,DE、DF分別是ADC,∠BDC的角平分線,,,,,,,,在四邊形CEDF中,,四邊形CEDF是矩形.【點(diǎn)睛】本題主要是考查了尺規(guī)作圖、直角三角形斜邊中線性質(zhì)以及矩形的判定,熟練利用直角三角形斜邊中線性質(zhì),找到三角形全等的判定條件,并且選擇合適的矩形判定條件,是解決本題的關(guān)鍵.2、見解析【分析】先根據(jù)平行線的性質(zhì)得到∠DEC=∠BCE,∠DFC=∠GCF,再由角平分線的定義得到,,則∠DEC=∠DCE,∠DFC=∠DCF,推出DE=DC,DF=DC,則DE=DF,再由AD=CD,即可證明四邊形AECF是平行四邊形,再由∠ECF=∠DCE+∠DCF=,即可得證.【詳解】證明:∵PQ∥BC,∴∠DEC=∠BCE,∠DFC=∠GCF,∵CE平分∠BCA,CF平分∠ACG,∴,,∴∠DEC=∠DCE,∠DFC=∠DCF,∴DE=DC,DF=DC,∴DE=DF,∵點(diǎn)D是邊AC的中點(diǎn),∴AD=CD,∴四邊形AECF是平行四邊形,∵∠BCA+∠ACG=180°,∴∠ECF=∠DCE+∠DCF=,∴平行四邊形AECF是矩形.【點(diǎn)睛】本題主要考查了矩形的判定,平行線的性質(zhì),角平分線的定義,等腰三角形的性質(zhì)與判定,等等,熟練掌握矩形的判定條件是解題的關(guān)鍵.3、2598元【分析】根據(jù)菱形的性質(zhì),先求出菱形的一條對角線,由勾股定理求出另一條對角線的長,由三角形的中位線定理,求出矩形的兩條邊,再求出矩形的面積,最后求得投資資金.【詳解】連接BD,AD相交于點(diǎn)O,如圖:∵四邊形ABCD是一個菱形,∴AC⊥BD,∵∠ABC=120°,∴∠A=60°,∴△ABD為等邊三角形,∵菱形的周長為40m,∴菱形的邊長為10m,∴BD=10m,BO=5m,∴在Rt△AOB中,m,∴AC=2OA=m,∵E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),∴EH=BD=5m,EF=AC=5m,∴S矩形=5×5=50m2,則需投資資金50×30=1500×1.732≈2598元【點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 17666:2025 EN Space systems - Programme management - Risk management
- 【正版授權(quán)】 IEC 60068-3-14:2025 EN Environmental testing – Part 3-14: Supporting documentation and guidance – Developing a climatic sequential test
- 校園師生消防知識培訓(xùn)課件
- 絕食減肥測試題及答案
- 甲乳外科考試題及答案
- 自律作息測試題及答案
- 桂林社工面試題及答案
- 胰腺炎考試試題及答案
- 鎖骨護(hù)理試題及答案
- 茶藝綠茶考試題及答案
- 2025年云南省高校大學(xué)《輔導(dǎo)員》招聘考試題庫及答案
- 消費(fèi)品市場2025年消費(fèi)者對綠色包裝認(rèn)知及需求調(diào)研可行性研究報告
- 臺球廳消防知識培訓(xùn)課件
- 充電樁運(yùn)維服務(wù)協(xié)議
- 2025至2030中國防砸安全鞋行業(yè)運(yùn)營態(tài)勢與投資前景調(diào)查研究報告
- 2025年醫(yī)療器械倉庫管理培訓(xùn)試題及答案
- 2024年湖南省古丈縣事業(yè)單位公開招聘工作人員考試題含答案
- 卵巢性索間質(zhì)腫瘤課件
- 2025甘肅行政執(zhí)法資格考試模擬卷及答案(題型)
- 2025-2026年秋季第一學(xué)期學(xué)校德育工作安排表:德潤心田、智啟未來、行塑棟梁
- 成人零基礎(chǔ)英語教學(xué)課件
評論
0/150
提交評論