難點(diǎn)解析江西省瑞昌市中考數(shù)學(xué)真題分類(勾股定理)匯編專題訓(xùn)練試題(含答案解析)_第1頁(yè)
難點(diǎn)解析江西省瑞昌市中考數(shù)學(xué)真題分類(勾股定理)匯編專題訓(xùn)練試題(含答案解析)_第2頁(yè)
難點(diǎn)解析江西省瑞昌市中考數(shù)學(xué)真題分類(勾股定理)匯編專題訓(xùn)練試題(含答案解析)_第3頁(yè)
難點(diǎn)解析江西省瑞昌市中考數(shù)學(xué)真題分類(勾股定理)匯編專題訓(xùn)練試題(含答案解析)_第4頁(yè)
難點(diǎn)解析江西省瑞昌市中考數(shù)學(xué)真題分類(勾股定理)匯編專題訓(xùn)練試題(含答案解析)_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省瑞昌市中考數(shù)學(xué)真題分類(勾股定理)匯編專題訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、在自習(xí)課上,小芳同學(xué)將一張長(zhǎng)方形紙片ABCD按如圖所示的方式折疊起來(lái),她發(fā)現(xiàn)D、B兩點(diǎn)均落在了對(duì)角線AC的中點(diǎn)O處,且四邊形AECF是菱形.若AB=3cm,則陰影部分的面積為()A.1cm2 B.2cm2 C.cm2 D.cm22、如圖,已知點(diǎn)E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.803、如圖,在2×2的正方形網(wǎng)格中有9個(gè)格點(diǎn),已經(jīng)取定點(diǎn)A和B,在余下的點(diǎn)中任取一點(diǎn)C,使△ABC為直角三角形的概率是(

)A. B. C. D.4、我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》有一道“蕩秋千”的問(wèn)題:“平地秋千未起,踏板一尺離地.送行二步與人齊,5尺人高曾記,仕女家人爭(zhēng)蹴.良工高士素好奇,算出索長(zhǎng)有幾?”此問(wèn)題可理解為:“如圖,有一架秋千,當(dāng)它靜止時(shí),踏板離地距離的長(zhǎng)為尺,將它向前水平推送尺時(shí),即尺,秋千踏板離地的距離和身高尺的人一樣高,秋千的繩索始終拉得很直,試問(wèn)繩索有多長(zhǎng)?”,設(shè)秋千的繩索長(zhǎng)為尺,根據(jù)題意可列方程為(

)A. B.C. D.5、如圖是一個(gè)三級(jí)臺(tái)階,它的每一級(jí)的長(zhǎng)、寬、高分別為20dm、3dm、2dm,A和B是這個(gè)臺(tái)階上兩個(gè)相對(duì)的端點(diǎn),點(diǎn)A處有一只螞蟻,想到點(diǎn)B處去吃可口的食物,則螞蟻沿著臺(tái)階面爬行到點(diǎn)B的最短路程為(

)A.20dm B.25dm C.30dm D.35dm6、一個(gè)直角三角形的兩條直角邊邊長(zhǎng)分別為6和8,則斜邊上的高為(

)A.4.5 B.4.6 C.4.8 D.57、若直角三角形的三邊長(zhǎng)分別為2,4,x,則x的可能值有(

)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來(lái),蘆葦?shù)捻敹薉恰好到達(dá)水面的C處,且C到BD的距離AC=6米,水的深度(AB)為_(kāi)_______米2、我國(guó)古代九章算術(shù)中有數(shù)學(xué)發(fā)展史上著名的“葭生池中”問(wèn)題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問(wèn):葭長(zhǎng)幾何?(1丈=10尺).意思是:有一個(gè)長(zhǎng)方體池子,底面是邊長(zhǎng)為1丈的正方形,中間有蘆葦,把高出水面1尺的蘆葦拉向池邊(蘆葦沒(méi)有折斷),剛好貼在池邊上,問(wèn):蘆葦長(zhǎng)多少尺?答:蘆葦長(zhǎng)____________尺.3、《九章算術(shù)》中有“折竹抵地”問(wèn)題:“今有竹高一丈,末折抵地,去根三尺,問(wèn)折者高幾何?”題意是:有一根竹子原來(lái)高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問(wèn)折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為_(kāi)_____.4、《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書(shū)中有下列問(wèn)題:“今有垣高一丈,倚木于垣,上與垣齊.引木卻行一尺,其木至地,問(wèn)木長(zhǎng)幾何?”其意思為:今有墻高1丈,倚木桿于墻,使木之上端與墻平齊,牽引木桿下端退行1尺,則木桿(從墻上)滑落至地上.問(wèn)木桿是多長(zhǎng)?(1丈=10尺)設(shè)木桿長(zhǎng)為x尺根據(jù)題意,可列方程為_(kāi)_____.5、如圖,一架長(zhǎng)5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時(shí)梯子的高度達(dá)不到工作要求,因此把梯子的B1端向墻的方向移動(dòng)了1.6米到B處,此時(shí)梯子的高度達(dá)到工作要求,那么梯子的A1端向上移動(dòng)了_____米.6、如圖,臺(tái)風(fēng)過(guò)后,某希望小學(xué)的旗桿在離地某處斷裂,且旗桿頂部落在離旗桿底部8m處,已知旗桿原長(zhǎng)16m,你能求出旗桿在離底部________m位置斷裂.7、如圖,將矩形紙片ABCD沿EF折疊,使D點(diǎn)與BC邊的中點(diǎn)D′重合.若BC=8,CD=6,則CF的長(zhǎng)為_(kāi)________________.8、已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,則Rt△ABC的面積等于_________cm2.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,一個(gè)長(zhǎng)5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).(1)求梯子底端B外移距離BD的長(zhǎng)度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.2、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.3、如圖,,兩個(gè)工廠位于一段直線形河道的異側(cè),工廠至河道的距離為,工廠至河道的距離為,經(jīng)測(cè)量河道上、兩地間的距離為,現(xiàn)準(zhǔn)備在河邊某處(河寬不計(jì))修一個(gè)污水處理廠.(1)設(shè),請(qǐng)用的代數(shù)式表示的長(zhǎng)______;(結(jié)果保留根號(hào))(2)為了使,兩廠到污水處理廠的排污管道之和最短,請(qǐng)?jiān)趫D中畫(huà)出污水廠位置,并求出排污管道最短長(zhǎng)度?(3)通過(guò)以上的解答,充分展開(kāi)聯(lián)想,運(yùn)用數(shù)形結(jié)合思想,請(qǐng)你求出的最小值為多少?4、如圖是三個(gè)全等的直角三角形紙片,且,按如圖的三種方法分別將其折疊,使折痕(圖中虛線)過(guò)其中的一個(gè)頂點(diǎn),且使該頂點(diǎn)所在角的兩邊重合,記折疊后不重疊部分面積分別為.(1)若,求的值.(2)若,求①單個(gè)直角三角形紙片的面積是多少?②此時(shí)的值是多少?5、如圖,把長(zhǎng)方形紙片沿折疊,使點(diǎn)落在邊上的點(diǎn)處,點(diǎn)落在點(diǎn)處.(1)試說(shuō)明;(2)設(shè),,,試猜想,,之間的關(guān)系,并說(shuō)明理由.6、已知:如圖,四邊形ABCD,∠A=90°,AD=12,AB=16,CD=15,BC=25.(1)求BD的長(zhǎng);(2)求四邊形ABCD的面積.7、如圖,在△ABC和△DEB中,AC∥BE,∠C=90°,AB=DE,點(diǎn)D為BC的中點(diǎn),.(1)求證:△ABC≌△DEB.(2)連結(jié)AE,若BC=4,直接寫(xiě)出AE的長(zhǎng).-參考答案-一、單選題1、D【解析】【分析】由菱形的性質(zhì)得到∠FCO=∠ECO,進(jìn)而證明∠ECO=∠ECB=∠FCO=30°,2BE=CE,利用勾股定理得出BC=,再解得菱形的面積為2,最后由陰影部分的面積=S菱形AECF解題.【詳解】解:∵四邊形AECF是菱形,AB=3,∴假設(shè)BE=x,則AE=3﹣x,CE=3﹣x,∵四邊形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=,又∵AE=AB﹣BE=3﹣1=2,則菱形的面積是:AE?BC=2.∴陰影部分的面積=S菱形AECF=cm2.故選:D.【考點(diǎn)】本題考查菱形的性質(zhì)、勾股定理、含30°直角三角形的性質(zhì)等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.2、C【解析】【詳解】解:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選:C.3、C【解析】【分析】找到可以組成直角三角形的點(diǎn),根據(jù)概率公式解答即可.【詳解】解:如圖,,,,均可與點(diǎn)和組成直角三角形.,故選:C.【考點(diǎn)】本題考查了概率公式,解題的關(guān)鍵是掌握如果一個(gè)事件有種可能,而且這些事件的可能性相同,其中事件出現(xiàn)種結(jié)果,那么事件的概率(A).4、C【解析】【分析】根據(jù)勾股定理列方程即可得出結(jié)論.【詳解】解:由題意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故選:C.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,讀懂題意是解題的關(guān)鍵.5、B【解析】【分析】先將圖形平面展開(kāi),再用勾股定理根據(jù)兩點(diǎn)之間線段最短進(jìn)行解答.【詳解】三級(jí)臺(tái)階平面展開(kāi)圖為長(zhǎng)方形,長(zhǎng)為20dm,寬為(2+3)×3dm,則螞蟻沿臺(tái)階面爬行到B點(diǎn)最短路程是此長(zhǎng)方形的對(duì)角線長(zhǎng).可設(shè)螞蟻沿臺(tái)階面爬行到B點(diǎn)最短路程為xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故選B.【考點(diǎn)】本題考查了平面展開(kāi)——最短路徑問(wèn)題,用到臺(tái)階的平面展開(kāi)圖,只要根據(jù)題意判斷出長(zhǎng)方形的長(zhǎng)和寬即可解答.6、C【解析】【分析】根據(jù)勾股定理求出斜邊的長(zhǎng),再根據(jù)面積法求出斜邊的高.【詳解】解:設(shè)斜邊長(zhǎng)為c,高為h.由勾股定理可得:c2=62+82,則c=10,直角三角形面積S=×6×8=×c×h,可得h=4.8,故選:C.【考點(diǎn)】本題考查了勾股定理,利用勾股定理求直角三角形的邊長(zhǎng)和利用面積法求直角三角形的高是解決此類題的關(guān)鍵.7、B【解析】【詳解】分析:x可為斜邊也可為直角邊,因此解本題時(shí)要對(duì)x的取值進(jìn)行討論.解答:解:當(dāng)x為斜邊時(shí),x2=22+42=20,所以x=2;當(dāng)4為斜邊時(shí),x2=16-4=12,x=2.故選B.點(diǎn)評(píng):本題考查了勾股定理的應(yīng)用,注意要分兩種情況討論.二、填空題1、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,從現(xiàn)實(shí)圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.2、13【解析】【分析】設(shè)水深OB=x尺,則蘆葦長(zhǎng)OA'=(x+1)尺,根據(jù)勾股定理列方程求解即可.【詳解】解:根據(jù)題意,設(shè)水深OB=x尺,則蘆葦長(zhǎng)OA'=(x+1)尺,根據(jù)題意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案為:13.【考點(diǎn)】此題考查了勾股定理的實(shí)際應(yīng)用,解題的關(guān)鍵是根據(jù)題意設(shè)出未知數(shù),根據(jù)勾股定理列方程求解.3、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長(zhǎng)為尺,根據(jù)題意可列方程為:.故答案為:.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問(wèn)題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問(wèn)題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫(huà)出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.4、102+(x-1)2=x2【解析】【分析】當(dāng)木桿的上端與墻頭平齊時(shí),木桿與墻、地面構(gòu)成直角三角形,設(shè)木桿長(zhǎng)為x尺,則木桿底端離墻有(x-1)尺,根據(jù)勾股定理可列出方程.【詳解】解:如圖,設(shè)木桿AB長(zhǎng)為x尺,則木桿底端B離墻的距離即BC的長(zhǎng)有(x-1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x-1)2=x2,故答案為:102+(x-1)2=x2.【考點(diǎn)】此題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是由實(shí)際問(wèn)題抽象出直角三角形,從而運(yùn)用勾股定理解題.5、0.8【解析】【分析】梯子的長(zhǎng)是不變的,只要利用勾股定理解出梯子滑動(dòng)前和滑動(dòng)后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長(zhǎng)即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點(diǎn)】本題考查勾股定理的應(yīng)用,解題關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫(huà)出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.6、6【解析】【分析】設(shè),則,在中,利用勾股定理列方程,即可求解.【詳解】解:如圖,由題意知,,,設(shè),則,在中,,即,解得,因此旗桿在離底部6m位置斷裂.故答案為:6.【考點(diǎn)】本題考查勾股定理的實(shí)際應(yīng)用,讀懂題意,根據(jù)勾股定理列出方程是解題的關(guān)鍵.7、【解析】【分析】設(shè),在中利用勾股定理求出x即可解決問(wèn)題.【詳解】解:∵是的中點(diǎn),,,∴,由折疊的性質(zhì)知:,設(shè),則,在中,根據(jù)勾股定理得:,即:,解得,∴.故答案為:【考點(diǎn)】本題考查翻折變換、勾股定理,解題的關(guān)鍵是利用翻折不變性解決問(wèn)題,學(xué)會(huì)轉(zhuǎn)化的思想,利用方程的去思考問(wèn)題,屬于中考??碱}型.8、24【解析】【分析】利用勾股定理,可得:a2+b2=c2=100,即(a+b)2﹣2ab=100,可得ab=48,即可得出面積.【詳解】解:∵∠C=90°,∴a2+b2=c2=100,∴(a+b)2﹣2ab=100,∴196﹣2ab=100,∴ab=48,∴S△ABC==24cm2;故答案為:24.【考點(diǎn)】本題考查勾股定理、完全平方公式的變形求值、三角形面積計(jì)算的運(yùn)用,熟知勾股定理是解題的關(guān)鍵.三、解答題1、(1)BD=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明見(jiàn)解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根據(jù)勾股定理求出OD,即可求出答案;(2)求出△AOB和△DOC全等,根據(jù)全等三角形的性質(zhì)得出OC=OB,∠ABO=∠DCO,求出∠OCB=∠OBC,求出∠EBC=∠ECB,根據(jù)等腰三角形的判定得出即可.【詳解】(1)∵AO⊥OD,AO=4m,AB=5m,∴OB==3m,∵梯子的頂端A沿墻下滑1m至C點(diǎn),∴OC=AO﹣AC=3m,∵CD=AB=5m,∴由勾股定理得:OD=4m,∴BD=OD﹣OB=4m﹣3m=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明如下:連接CB,由(1)知:AO=DO=4m,AB=CD=5m,∵∠AOB=∠DOC=90°,在Rt△AOB和Rt△DOC中,∴Rt△AOB≌Rt△DOC(HL),∴∠ABO=∠DCO,OC=OB,∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB,∴∠EBC=∠ECB,∴CE=BE.【考點(diǎn)】本題考查了勾股定理,等腰三角形的性質(zhì)和判定,全等三角形的判定與性質(zhì)等,能靈活運(yùn)用勾股定理進(jìn)行計(jì)算是解(1)的關(guān)鍵,能求出∠DCO=∠ABO和OC=OB是解(2)的關(guān)鍵.2、(1)A、C兩地之間的距離為14.1km;(2)C港在A港北偏東15°的方向上.【解析】【分析】(1)根據(jù)方位角的定義可得出∠ABC=90°,再根據(jù)勾股定理可求得AC的長(zhǎng)為14.1.(2)由(1)可知△ABC為等腰直角三角形,從而得出∠BAC=45°,求出∠CAM=15°,所而確定C港在A港的什么方向.【詳解】(1)由題意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC==≈14.1.答:A、C兩地之間的距離為14.1km.(2)由(1)知,△ABC為等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏東15°的方向上.【考點(diǎn)】本題考查了方位角的概念及勾股定理及其逆定理,正確理解方位角是解題的關(guān)鍵.3、(1)+;(2)污水廠位置見(jiàn)解析,排污管道最短長(zhǎng)度為10km;(3)13【解析】【分析】(1)依據(jù)ED=x,AC⊥CD、BD⊥CD,故根據(jù)勾股定理可用x表示出AE+BE的長(zhǎng);(2)根據(jù)兩點(diǎn)之間線段最短可知連接AB與CD的交點(diǎn)就是污水處理廠E的位置.過(guò)點(diǎn)B作BF⊥AC于F,構(gòu)造出直角三角形,利用勾股定理求出AB的長(zhǎng);(3)根據(jù)AE+BE=+=AB=10,可猜想所求代數(shù)式的值為13.(1)解:在Rt△ACE和Rt△BDE中,根據(jù)勾股定理可得AE=,BE=,∴AE+BE=+;(2)解:根據(jù)兩點(diǎn)之間線段最短可知,連接AB與CD的交點(diǎn)就是污水處理廠E的位置,如圖:過(guò)點(diǎn)B作BF⊥AC于F,則有BF=CD=8,BD=CF=1,∴AF=AC+CF=6,在Rt△ABF中,BA===10,∴排污管道最短長(zhǎng)度10km;(3)解:根據(jù)以上推理,可作出下圖:設(shè)ED=x,AC=3,DB=2,CD=12.當(dāng)A、E、B共線時(shí)求出AB的值即為原式最小值.當(dāng)A、E、B共線時(shí),==13,即其最小值為13.故答案為:13.【考點(diǎn)】本題考查了最短路線問(wèn)題,綜合利用了勾股定理,及用數(shù)形結(jié)合的方法求代數(shù)式的值的方法,利用兩點(diǎn)之間線段最短是解決問(wèn)題的關(guān)鍵.4、(1)(2)①36;②【解析】【分析】(1)設(shè)DE=CE=x,則BE=4-x,依據(jù)S△ABE=AB×DE=BE×AC,即可得到x的值,進(jìn)而得出S1的值.(2)①如圖1,依據(jù)S△ABE=AB×DE=BE×AC,即可得到DE=x,進(jìn)而得出S1=x2;如圖2,依據(jù)S△ABN=AB×HN=AN×BC,即可得到EN=x,進(jìn)而得出S2=x2,再根據(jù)S1+S2=13,即可得到x2=6,進(jìn)而得出單個(gè)直角三角形紙片的面積.②如圖3,由折疊可得,AC=CF=3x,所以BF=BC-CF=4x-3x=x,則S3=S△CMF=S△ACM,所以S3=,即可求解.(1)解:∵AC∶BC∶AB=3∶4∶5,AC=3,∴BC=4,AB=5,由折疊可得,DE=CE,∠ADE=∠C=90°,AD=AC=3,設(shè)DE=CE=x,則BE=4﹣x,∵S△ABE=AB×DE=BE×AC,∴AB×DE=BE×AC,即5x=3(4﹣x),解得x=,∴S1=BD×DE==.(2)解:由AC:BC:AB=3:4:5,可設(shè)AC=3x,BC=4x,AB=5x,①如圖1,由折疊可得,AD=AC=3x,BD=5x-3x=2x,DE=CE,∠ADE=∠C=90°,∵S△ABE=AB×DE=BE×AC,∴AB×DE=BE×AC,即5x×DE=(4x-DE)×3x,解得DE=x,∴S1=BD×DE=×2x×x=x2;如圖2,由折疊可得,BC=BH=4x,HN=CN,∴AH=x,AN=3x-HN,∵S△ABN=AB×HN=AN×BC,∴AB×HN=AN×BC,即5x×HN=(3x-HN)×4x,解得HN=x,∴S2=AH×HN=×x×x=x2,∵S1+S2=13,∴x2+x2=13,解得x2=6,∴S△ABC=×3x×4x=6x2=36.答:?jiǎn)蝹€(gè)直角三角形紙片的面積是36;②如圖3,由折疊可得,AC=CF=3x,∴BF=BC-CF=4x-3x=x,∴S3=S△CMF=S△ACM,∴S3==,答:此時(shí)S3的值為.【考點(diǎn)】本題主要考查了翻折變換(折疊問(wèn)題),折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.解決問(wèn)題的關(guān)鍵是利用面積法求得某些線段的長(zhǎng)度.5、(1)證明見(jiàn)解析;(2),,之間的關(guān)系是.理由見(jiàn)解析.【解析】【分析】(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論