難點解析-滬科版9年級下冊期末測試卷附答案詳解(A卷)_第1頁
難點解析-滬科版9年級下冊期末測試卷附答案詳解(A卷)_第2頁
難點解析-滬科版9年級下冊期末測試卷附答案詳解(A卷)_第3頁
難點解析-滬科版9年級下冊期末測試卷附答案詳解(A卷)_第4頁
難點解析-滬科版9年級下冊期末測試卷附答案詳解(A卷)_第5頁
已閱讀5頁,還剩26頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列事件為必然事件的是()A.明天要下雨B.a(chǎn)是實數(shù),|a|≥0C.﹣3<﹣4D.打開電視機,正在播放新聞2、下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B. C. D.3、如圖,點A、B、C在上,,則的度數(shù)是()A.100° B.50° C.40° D.25°4、下列說法中正確的是()A.“打開電視,正在播放《新聞聯(lián)播》”是必然事件B.某次抽獎活動中獎的概率為,說明每買100張獎券,一定有一次中獎C.想了解某市城鎮(zhèn)居民人均年收入水平,宜采用抽樣調(diào)查D.我區(qū)未來三天內(nèi)肯定下雪5、如圖,AB,CD是⊙O的弦,且,若,則的度數(shù)為()A.30° B.40° C.45° D.60°6、若a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),則關(guān)于x的方程為一元二次方程的概率是()A.1 B. C. D.7、下列事件是隨機事件的是()A.拋出的籃球會下落B.經(jīng)過有交通信號燈的路口,遇到紅燈C.任意畫一個三角形,其內(nèi)角和是D.400人中有兩人的生日在同一天8、下列事件是必然發(fā)生的事件是()A.在地球上,上拋的籃球一定會下落B.明天的氣溫一定比今天高C.中秋節(jié)晚上一定能看到月亮D.某彩票中獎率是1%,買100張彩票一定中獎一張第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、有五張正面分別標(biāo)有數(shù)字,,0,1,2的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為,將該卡片放回洗勻后從中再任取一張,將該卡片上的數(shù)字記為,則為非負數(shù)的概率為________.2、斛是中國古代的一種量器.據(jù)《漢書.律歷志》記載:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是說:“斛的底面為:正方形外接一個圓,此圓外是一個同心圓”.如圖所示,問題:現(xiàn)有一斛,其底面的外圓直徑為兩尺五寸(即2.5尺),“庣旁”為兩寸五分(即兩同心圓的外圓與內(nèi)圓的半徑之差為0.25尺),則此斛底面的正方形的邊長為________尺.3、在一個不透明的盒子里裝有若干個紅球和20個白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過多次重復(fù)實驗發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個.4、如圖,AB是半圓O的直徑,AB=4,點C,D在半圓上,OC⊥AB,,點P是OC上的一個動點,則BP+DP的最小值為______.5、在平面直角坐標(biāo)系中,點關(guān)于原點對稱的點的坐標(biāo)是______.6、如圖,正方形ABCD的邊長為1,⊙O經(jīng)過點C,CM為⊙O的直徑,且CM=1.過點M作⊙O的切線分別交邊AB,AD于點G,H.BD與CG,CH分別交于點E,F(xiàn),⊙O繞點C在平面內(nèi)旋轉(zhuǎn)(始終保持圓心O在正方形ABCD內(nèi)部).給出下列四個結(jié)論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點在同一個圓上;④四邊形CGAH面積的最大值為2.其中正確的結(jié)論有_____(填寫所有正確結(jié)論的序號).7、在Rt△ABC中,∠ACB=90°,AC=AB,點E、F分別是邊CA、CB的中點,已知點P在線段EF上,聯(lián)結(jié)AP,將線段AP繞點P逆時針旋轉(zhuǎn)90°得到線段DP,如果點P、D、C在同一直線上,那么tan∠CAP=_______.三、解答題(7小題,每小題0分,共計0分)1、如圖,的直徑cm,AM和BN是它的切線,DE與相切于點E,并與AM,BN分別相交于D,C兩點.設(shè),,求y關(guān)于x的函數(shù)解析式.2、隨著科技的發(fā)展,溝通方式越來越豐富.一天,甲、乙兩位同學(xué)同步從“微信”“QQ”,“電話”三種溝通方式中任意選一種與同學(xué)聯(lián)系.(1)用恰當(dāng)?shù)姆椒信e出甲、乙兩位同學(xué)選擇溝通方式的所有可能;(2)求甲、乙兩位同學(xué)恰好選擇同一種溝通方式的概率.3、隨著課后服務(wù)的全面展開,某校組織了豐富多彩的社團活動.炯炯和露露分別打算從以下四個社團:A.快樂足球,B.?dāng)?shù)學(xué)歷史,C.文學(xué)欣賞,D.棋藝鑒賞中,選擇一個社團參加.(1)炯炯選擇數(shù)學(xué)歷史的概率為______.(2)用畫樹狀圖或列表的方法求炯炯和露露選擇同一個社團的概率.4、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.5、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點D,點E在AC上,以AE為直徑的⊙O經(jīng)過點D.(1)求證:①BC是⊙O的切線;②;(2)若點F是劣弧AD的中點,且CE=3,試求陰影部分的面積.6、如圖,已知AB是的直徑,點D為弦BC中點,過點C作切線,交OD延長線于點E,連結(jié)BE,OC.(1)求證:.(2)求證:BE是的切線.7、4張相同的卡片上分別寫有數(shù)字0、1、、3,將卡片的背面朝上,洗后從中任意抽取1張,將卡片上的數(shù)字記錄下來;再從余下的3張卡片中任意抽取1張,同樣將卡片上的數(shù)字記錄下來.(1)第一次抽取的卡片上數(shù)字是非負數(shù)的概率為______;(2)小敏設(shè)計了如下游戲規(guī)則:當(dāng)?shù)谝淮斡涗浵聛淼臄?shù)字減去第二次記錄下來的數(shù)字所得結(jié)果為非負數(shù)時,甲獲勝;否則,乙獲勝.小敏設(shè)計的游戲規(guī)則公平嗎?為什么?(請用樹狀圖或列表等方法說明理由)-參考答案-一、單選題1、B【分析】根據(jù)事情發(fā)生的可能性大小進行判斷,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】A.明天要下雨,是隨機事件,不符合題意;B.a是實數(shù),|a|≥0,是必然事件,符合題意;C.﹣3<﹣4,是不可能事件,不符合題意D.打開電視機,正在播放新聞,是隨機事件,不符合題意故選B【點睛】本題考查了必然事件,隨機事件,不可能事件,實數(shù)的性質(zhì),有理數(shù)大小比較,掌握相關(guān)知識是解題的關(guān)鍵.2、B【分析】根據(jù)“把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形”及“如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形”,由此問題可求解.【詳解】解:A、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;B、是中心對稱圖形但不是軸對稱圖形,故符合題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;D、是軸對稱圖形但不是中心對稱圖形,故不符合題意;故選B.【點睛】本題主要考查中心對稱圖形及軸對稱圖形的識別,熟練掌握中心對稱圖形及軸對稱圖形的定義是解題的關(guān)鍵.3、C【分析】先根據(jù)圓周角定理求出∠AOB的度數(shù),再由等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA=40°,故選:C.【點睛】本題考查的是圓周角定理,即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.4、C【分析】根據(jù)必然事件,隨機事件的定義,判斷全面調(diào)查與抽樣調(diào)查,逐項分析判斷即可,根據(jù)確定事件和隨機事件的定義來區(qū)分判斷即可,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】A.“打開電視,正在播放《新聞聯(lián)播》”是隨機事件,故該選項不正確,不符合題意;B.某次抽獎活動中獎的概率為,說明每買100張獎券,不一定有一次中獎,故該選項不正確,不符合題意;C.想了解某市城鎮(zhèn)居民人均年收入水平,宜采用抽樣調(diào)查,故該選項正確,符合題意;D.我區(qū)未來三天內(nèi)不一定下雪,故該選項不正確,不符合題意;故選C【點睛】本題考查了必然事件,隨機事件,判斷全面調(diào)查與抽樣調(diào)查,掌握以上知識是解題的關(guān)鍵.5、B【分析】由同弧所對的圓周角是圓心角的一半可得,利用平行線的性質(zhì):兩直線平行,內(nèi)錯角相等即可得.【詳解】解:∵,∴,∵,∴,故選:B.【點睛】題目主要考查圓周角定理,平行線的性質(zhì)等,理解題意,找出相關(guān)的角度是解題關(guān)鍵.6、B【分析】根據(jù)一元二次方程的定義,二次項系數(shù)不為0,四個數(shù)中有一個1不能取,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,然后利用概率公式計算即可.【詳解】解:當(dāng)a=1時于x的方程不是一元二次方程,其它三個數(shù)都是一元二次方程,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,關(guān)于x的方程為一元二次方程的概率是,故選擇B.【點睛】本題考查一元二次方程的定義,列舉法求概率,掌握一元二次方程的定義,列舉法求概率方法是解題關(guān)鍵.7、B【分析】根據(jù)事件的確定性和不確定性,以及隨機事件的含義和特征,逐項判斷即可.【詳解】A.拋出的籃球會下落是必然事件,故此選項不符合題意;B.經(jīng)過有交通信號燈的路口,遇到紅燈是隨機事件,故此選項符合題意;C.任意畫一個三角形,其內(nèi)角和是是不可能事件,故此選項不符合題意;D.400人中有兩人的生日在同一天是必然事件,故此選項不符合題意;故選B【點睛】此題主要考查了事件的確定性和不確定性,要熟練掌握,解答此題的關(guān)鍵是要明確:事件分為確定事件和不確定事件(隨機事件),確定事件又分為必然事件和不可能事件.8、A【分析】根據(jù)必然事件的概念(必然事件指在一定條件下一定發(fā)生的事件)可判斷正確答案.【詳解】解:A、在地球上,上拋的籃球一定會下落是必然事件,符合題意;B、明天的氣溫一定比今天的高,是隨機事件,不符合題意;C、中秋節(jié)晚上一定能看到月亮,是隨機事件,不符合題意;D、某彩票中獎率是1%,買100張彩票一定中獎一張,是隨機事件,不符合題意.故選:A.【點睛】本題考查了必然事件的概念,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.關(guān)鍵是理解必然事件指在一定條件下一定發(fā)生的事件.二、填空題1、【分析】求出為負數(shù)的事件個數(shù),進而得出為非負數(shù)的事件個數(shù),然后求解即可.【詳解】解:兩次取卡片共有種可能的事件;兩次取得卡片數(shù)字乘積為負數(shù)的事件為等8種可能的事件∴為非負數(shù)共有種∴為非負數(shù)的概率為故答案為:.【點睛】本題考查了列舉法求隨機事件的概率.解題的關(guān)鍵在于求出事件的個數(shù).2、【分析】如圖,根據(jù)四邊形CDEF為正方形,可得∠D=90°,CD=DE,從而得到CE是直徑,∠ECD=45°,然后利用勾股定理,即可求解.【詳解】解:如圖,∵四邊形CDEF為正方形,∴∠D=90°,CD=DE,∴CE是直徑,∠ECD=45°,根據(jù)題意得:AB=2.5,,∴,∴,即此斛底面的正方形的邊長為尺.故答案為:【點睛】本題主要考查了圓內(nèi)接四邊形,勾股定理,熟練掌握圓內(nèi)接四邊形的性質(zhì),勾股定理是解題的關(guān)鍵.3、30【分析】設(shè)袋中紅球有x個,根據(jù)題意用紅球數(shù)除以白球和紅球的總數(shù)等于紅球的頻率列出方程即可求出紅球數(shù).【詳解】解:設(shè)袋中紅球有x個,根據(jù)題意,得:,解并檢驗得:x=30.所以袋中紅球有30個.故答案為:30.【點睛】本題考查了利用頻率估計概率,解決本題的關(guān)鍵是用頻率的集中趨勢來估計概率,這個固定的近似值4、【分析】如圖,連接AD,PA,PD,OD.首先證明PA=PB,再根據(jù)PD+PB=PD+PA≥AD,求出AD即可解決問題.【詳解】解:如圖,連接AD,PA,PD,OD.∵OC⊥AB,OA=OB,∴PA=PB,∠COB=90°,∵,∴∠DOB=×90°=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠ABD=60°∵AB是直徑,∴∠ADB=90°,∴AD=AB?sin∠ABD=2,∵PB+PD=PA+PD≥AD,∴PD+PB≥2,∴PD+PB的最小值為2,故答案為:2.【點睛】本題考查圓周角定理,垂徑定理,圓心角,弧,弦之間的關(guān)系等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題.5、(3,4)【分析】關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).【詳解】:由題意,得點(-3,-4)關(guān)于原點對稱的點的坐標(biāo)是(3,4),故答案為:(3,4).【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).6、②③④【分析】根據(jù)切線的性質(zhì),正方形的性質(zhì),通過三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個結(jié)論;運用對角互補的四邊形內(nèi)接于圓,證明∠GHF+∠GEF=180°,取GH的中點P,連接PA,則PA+PC≥AC,當(dāng)PC最大時,PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時,PA最小,計算即可.【詳解】∵GH是⊙O的切線,M為切點,且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無法確定HD=2BG,故①錯誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對角互補的四邊形內(nèi)接于圓,∴H,F(xiàn),E,G四點在同一個圓上,故③正確;∵正方形ABCD的邊長為1,∴=1=,∠GAH=90°,AC=取GH的中點P,連接PA,∴GH=2PA,∴=,∴當(dāng)PA取最小值時,有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當(dāng)PC最大時,PA最小,∵直徑是圓中最大的弦,∴PC=1時,PA最小,∴當(dāng)A,P,C三點共線時,且PC最大時,PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點睛】本題考查了切線的性質(zhì),直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點共圓,正方形的性質(zhì),熟練掌握圓的性質(zhì),靈活運用直角三角形的性質(zhì),線段最短原理是解題的關(guān)鍵.7、【分析】①如圖1所示,由題意知,EF為△ABC的中位線,∠EFC=∠ABC=45°,∠PAO=45°,∠PAO=∠OFH,∠POA=∠FOH,∠H=∠APO,在Rt△APC中,EA=EC,有PE=EA=EC,∠EPA=∠EAP=∠BAH,∠H=∠BAH,BH=BA,∠ADP=∠BDC=45°,∠ADB=90°,知BD⊥AH,∠DBA=∠DBC=22.5°,∠ADB=∠ACB=90°,有A,D,C,B四點共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∠DAC=∠DCA=22.5°,知DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,tan∠CAP==計算求解即可;②如圖2所示,當(dāng)點P在線段CD上時,同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=,PC=a﹣a,tan∠CAP=,計算求解即可,而情形2滿足要求.【詳解】解:①如圖1,當(dāng)點D在線段PC上時,延長AD交BC的延長線于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四點共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,∴tan∠CAP===+1;②如圖2中,當(dāng)點P在線段CD上時,同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=∴PC=a﹣a,∴tan∠CAP===,∵點P在線段EF上,∴情形1不滿足條件,情形2滿足條件;故答案為:﹣1.【點睛】本題考查了中位線,等腰三角形的判定與性質(zhì),旋轉(zhuǎn),直角三角形斜邊上中線的性質(zhì),正切函數(shù)等知識點.解題的關(guān)鍵在于表示出正切中線段的長度.三、解答題1、【分析】連接OC,OD,OE,根據(jù)切線的性質(zhì)得到cm,,,推出,,根據(jù),列得,從而求出函數(shù)解析式.【詳解】解:連接OC,OD,OE,∵AD切于點A,CB切于點B,CD切于點E,直徑cm∴cm,,,∴,,∵,∴∴..【點睛】此題考查了圓的切線的性質(zhì)定理,全等三角形的判定及性質(zhì)定理,求函數(shù)解析式,正確連線利用切線的性質(zhì)是解題的關(guān)鍵.2、(1)3種可能,分別是“微信”“QQ”,“電話”(2)【分析】(1)用例舉法可得甲,乙兩位同學(xué)選擇溝通方式都有3種可能.(2)畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出恰好選中同一種溝通方式的結(jié)果數(shù),然后根據(jù)概率公式求解.(1)解:甲,乙兩位同學(xué)選擇溝通方式都有3種可能,分別是“微信”“QQ”,“電話”.(2)解:畫出樹狀圖,如圖所示所有情況共有9種情況,其中恰好選擇同一種溝通方式的共有3種情況,故兩人恰好選中同一種溝通方式的概率為.【點睛】本題考查了判斷簡單隨機事件的可能性,利用列表法與樹狀圖法求解等可能事件的概率;利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.3、(1)(2)炯炯和露露選擇同一個社團的概率為【分析】(1)直接由概率公式求解即可;(2)畫樹狀圖,共有16種等可能的結(jié)果,其中炯炯和露露選同一個社團的有4種結(jié)果,再由概率公式求解即可.(1)∵共有A.快樂足球,B.?dāng)?shù)學(xué)歷史,C.文學(xué)欣賞,D.棋藝鑒賞四個社團,數(shù)學(xué)歷史是其中一個社團,∴炯炯選擇數(shù)學(xué)歷史的概率為,故答案為:;(2)畫樹狀圖如下:共有16種等可能的結(jié)果,其中炯炯和露露選同一個社團的有4種結(jié)果,∴P(炯炯和露露選擇同一個社團)=【點睛】此題考查了用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回試驗還是不放回試驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進而得到OM=BF=2,可得到CM=OM,進而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點O為AB的中點,∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長度為.【點睛】本題主要考查了圓的基本性質(zhì),垂徑定理,切線的判定,等邊三角形的判定和性質(zhì),熟練掌握相關(guān)知識點是解題的關(guān)鍵.5、(1)①見解析;②見解析;(2).【分析】(1)①連接OD,由角平分線的性質(zhì)解得,再根據(jù)內(nèi)錯角相等,兩直線平行,證明,繼而由兩直線平行,同旁內(nèi)角互補證明即可解題;②連接DE,由弦切角定理得到,再證明,由相似三角形對應(yīng)邊成比例

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論