




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
重慶市九龍坡區(qū)7年級數(shù)學下冊第六章概率初步專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列事件中是不可能事件的是()A.鐵杵成針 B.水滴石穿 C.水中撈月 D.百步穿楊2、下列事件中屬于必然事件的是()A.正數(shù)大于負數(shù)B.下周二,溫州的天氣是陰天C.在一個只裝有白球的袋子中摸出一個紅球D.在一張紙上任意畫兩條線段,這兩條線段相交3、一個袋中裝有紅、黑、黃三種顏色小球共15個,這些球除顏色外均相同,其中紅色球有4個,若從袋中任意取出一個球,取出黃色球的概率為,則黑色球的個數(shù)為()A.3 B.4 C.5 D.64、某十字路口的交通信號燈,每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當你抬頭看信號燈時,是綠燈的可能性大小為()A. B. C. D.5、現(xiàn)有4條線段,長度依次是2、5、7、8,從中任選三條,能組成三角形的概率是()A. B. C. D.6、下列成語中,描述確定事件的個數(shù)是()①守株待兔;②塞翁失馬;③水中撈月;④流水不腐;⑤不期而至;⑥張冠李戴;⑦生老病死.A.5 B.4 C.3 D.27、下列事件中,是必然事件的是()A.如果a2=b2,那么a=bB.車輛隨機到達一個路口,遇到紅燈C.2021年有366天D.13個人中至少有兩個人生肖相同8、下列事件中,屬于不可能事件的是()A.射擊運動員射擊一次,命中靶心B.從一個只裝有白球和紅球的袋中摸球,摸出黃球C.班里的兩名同學,他們的生日是同一天D.經(jīng)過紅綠燈路口,遇到綠燈9、將三粒均勻的分別標有1,2,3,4,5,6的正六面體骰子同時擲出,出現(xiàn)的數(shù)字分別為a,b,c,則a,b,c正好是直角三角形三邊長的概率是().A. B. C. D.10、從分別標有號數(shù)1到10的10張除標號外完全一樣的卡片中,隨意抽取一張,其號數(shù)為3的倍數(shù)的概率是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、某班共有36名同學,其中男生16人,喜歡數(shù)學的同學有12人,喜歡體育的同學有24人.從該班同學的學號中隨意抽取1名同學,設(shè)這名同學是女生的可能性為a,這名同學喜歡數(shù)學的可能性為b,這名同學喜歡體育的可能性為c,則a,b,c的大小關(guān)系是___________.2、某校初三(2)班想舉辦班徽設(shè)計比賽,全班50名同學,計劃每位同學交設(shè)計方案一份,擬評選出10份為一等獎,那么該班某位同學獲一等獎的概率為______________.3、一枚質(zhì)地均勻的骰子的六個面上分別刻有1~6的點數(shù),拋擲這枚骰子,若拋到偶數(shù)的概率記作,拋到奇數(shù)的概率記作,則與的大小關(guān)系是______.4、在一個不透明的袋中裝有10個只有顏色不同的球,其中2個紅球、3個黃球和5個白球.從袋中任意摸出一個球,是白球的概率為________.5、拋擲一枚質(zhì)地均勻硬幣,第一次正面朝上,第二次也是正面朝上,問第三次是正面朝上的可能性為__________.6、設(shè)有12只型號相同的杯子,其中一等品7只,二等品2只,三等品3只.則從中任意取一只,是二等品的概率等于__________.7、在一個不透明的口袋中裝有5個完全相同的小球,把它們分別標號為1,2,3,4,5,從中隨機摸出一個小球,其標號大于2的概率為_____.8、寒假即將來臨,小明要從甲、乙、丙三個社區(qū)中隨機選取一個社區(qū)參加綜合實踐活動,那么小明選擇到甲社區(qū)參加實踐活動的可能性為__________.9、(1)“同時投擲兩枚骰子,朝上的數(shù)字相乘為7”的概率是_______(2)在一個不透明的袋子中有10個除顏色外均相同的小球,通過多次摸球?qū)嶒灪?,發(fā)現(xiàn)摸到白球的頻率約為40%,估計袋中白球有____個.10、在一個不透明袋子中有3個紅球和2個黑球,這些球除顏色外無其他差別.從袋子中隨機取出1個球,則取出紅球的概率是________.三、解答題(6小題,每小題10分,共計60分)1、如圖,一個質(zhì)地均勻的轉(zhuǎn)盤被平均分成6等份,分別標有1,2,3,4,5,6這6個數(shù)字.轉(zhuǎn)動轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字,求:(1)指針指向數(shù)字5的概率;(2)指針指向數(shù)字是偶數(shù)的概率;(3)請你用這個轉(zhuǎn)盤設(shè)計一個游戲,使自己獲勝的概率為.2、端午節(jié)吃粽子是中華民族的傳統(tǒng)習俗.據(jù)了解,甲廠家生產(chǎn),,三個品種的盒裝粽子,乙廠家生產(chǎn),兩個品種的盒裝粽子.端午節(jié)前,某商場在甲、乙兩個廠家中各選購一個品種的盒裝粽子銷售.(1)試用畫樹狀圖或列表的方法寫出所有選購方案.(2)求甲廠家的品種粽子被選中的概率.3、我校開展垃圾分類網(wǎng)上知識競賽,并從本校七年級隨機抽取了部分學生的競賽成績進行整理、描述和分析(根據(jù)成績共分A、B、C、D四個等級),其中獲得A等級和C等級的人數(shù)相等.相應(yīng)的條形統(tǒng)計圖和扇形統(tǒng)計圖如下:根據(jù)以上信息,解答下列問題:(1)共抽取了名學生;(2)補全條形統(tǒng)計圖,并求出扇形統(tǒng)計圖中B等級對應(yīng)的圓心角的度數(shù);(3)A等級中有4名同學是女生,學校計劃從A等級的學生中抽取1名參加區(qū)級垃圾分類網(wǎng)上知識競賽,則抽到女生的概率是多少?4、某學生在籃球場對自己進行籃球定點投球測試,下表是他的測試成績及相關(guān)數(shù)據(jù):第一回投球第二回投球第三回投球第四回投球第五回投球第六回投球每回投球次數(shù)51015202530每回進球次數(shù)386161718相應(yīng)頻率(1)請將數(shù)據(jù)表補充完整.(2)畫出該同學進球次數(shù)的頻率分布折線圖.(3)如果這個測試繼續(xù)進行下去,每回的投球次數(shù)不斷增加,根據(jù)上表數(shù)據(jù),測試的頻率將穩(wěn)定在他投球1次時進球的概率附近,請你估計這個概率是多少?(結(jié)果用小數(shù)表示)5、某商場進行有獎促銷活動,轉(zhuǎn)盤分為5個扇形區(qū)域,分別是特等獎、一等獎、二等獎、三等獎及不獲獎,制作轉(zhuǎn)盤時,將獲獎扇形區(qū)域圓心角分配如下表:獎次特等獎一等獎二等獎三等獎圓心角如果不用轉(zhuǎn)盤,請設(shè)計一種等效實驗方案(要求寫清楚替代工具和實驗規(guī)則).6、一個不透明的口袋中放有290個涂有紅、黑、白三種顏色的質(zhì)地相同的球.已知紅球的個數(shù)比黑球的2倍多40個,從袋中任取一個球是黑球的概率是.(1)袋中紅球的個數(shù)是______個;(2)求從袋中任取一個球是白球的概率.-參考答案-一、單選題1、C【分析】根據(jù)隨機事件,必然事件和不可能事件的定義,逐項即可判斷.【詳解】A、鐵杵成針,一定能達到,是必然事件,故選項不符合;B、水滴石穿,一定能達到,是必然事件,故選項不符合;C、水中撈月,一定不能達到,是不可能事件,故選項符合;D、百步穿楊,不一定能達到,是隨機事件,故選項不符合;故選:C【點睛】本題考查了隨機事件,必然事件,不可能事件,解決本題的關(guān)鍵是正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、A【分析】根據(jù)必然事件、隨機事件、不可能事件的定義逐項判斷即可得.【詳解】解:A、“正數(shù)大于負數(shù)”是必然事件,此項符合題意;B、“下周二,溫州的天氣是陰天”是隨機事件,此項不符題意;C、“在一個只裝有白球的袋子中摸出一個紅球”是不可能事件,此項不符題意;D、“在一張紙上任意畫兩條線段,這兩條線段相交”是隨機事件,此項不符題意;故選:A.【點睛】本題考查了必然事件、隨機事件、不可能事件,熟練掌握各定義是解題關(guān)鍵.3、C【分析】根據(jù)取到黃球的概率求出黃球個數(shù),總數(shù)減去紅黃球個數(shù),即可得到黑球個數(shù).【詳解】根據(jù)題意可求得黃球個數(shù)為:15×=6個,所以黑球個數(shù)為:15-6-4=5個,故選:C.【點睛】本題考查的是概率計算相關(guān)知識,熟記概率公式是解答此題的關(guān)鍵.4、C【分析】用綠燈亮的時間除以三種燈亮總時間即可解答.【詳解】解:除以三種燈亮總時間是30+25+5=60秒,綠燈亮25秒,所以綠燈的概率是:.故選C.【點睛】本題主要考查了概率的基本計算,掌握概率等于所求情況數(shù)與總情況數(shù)之比是解答本題的關(guān)鍵.5、A【分析】先找出從中任選三條的所有可能的結(jié)果,再根據(jù)三角形的三邊關(guān)系定理找出能組成三角形的結(jié)果,然后利用概率公式即可得.【詳解】解:由題意,從這4條線段中任選三條共有4種結(jié)果,即、、、,由三角形的三邊關(guān)系定理可知,能組成三角形的有2種結(jié)果,即和,則所求的概率為,故選:A.【點睛】本題考查了求概率,熟練掌握等可能性下的概率計算方法是解題關(guān)鍵.6、C【分析】根據(jù)個成語的意思,逐個分析判斷是否為確定事件即可,根據(jù)確定事件和隨機事件的定義來區(qū)分判斷即可,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】解①守株待兔,是隨機事件;②塞翁失馬,是隨機事件;③水中撈月,是不可能事件,是確定事件;④流水不腐,是確定事件;⑤不期而至,是隨機事件;⑥張冠李戴,是隨機事件;⑦生老病死,是確定事件.綜上所述,③④⑦是確定事件,共3個故選C【點睛】本題考查了確定事件和隨機事件的定義,熟悉定義是解題的關(guān)鍵.7、D【分析】在一定的條件下重復(fù)進行試驗時,有的事件在每次試驗中必然會發(fā)生,這樣的事件叫必然發(fā)生的事件,簡稱必然事件;利用概念逐一分析即可得到答案.【詳解】解:如果a2=b2,那么,原說法是隨機事件,故A不符合題意;車輛隨機到達一個路口,遇到紅燈,是隨機事件,故B不符合題意;2021年是平年,有365天,原說法是不可能事件,故C不符合題意;13個人中至少有兩個人生肖相同,是必然事件,故D符合題意,故選:D.【點睛】本題考查的是必然事件的概念,不可能事件,隨機事件的含義,掌握“必然事件的概念”是解本題的關(guān)鍵.8、B【分析】根據(jù)不可能事件的意義,結(jié)合具體的問題情境進行判斷即可.【詳解】解:A、射擊運動員射擊一次,命中靶心,是隨機事件;故A不符合題意;B、從一個只裝有白球和紅球的袋中摸球,摸出黃球,是不可能事件,故B符合題意;C、班里的兩名同學,他們的生日是同一天,是隨機事件;故C不符合題意;D、經(jīng)過紅綠燈路口,遇到綠燈,是隨機事件,故D不符合題意;故選:B.【點睛】本題考查隨機事件,不可能事件,必然事件,理解隨機事件,不可能事件,必然事件的意義是正確判斷的前提.9、C【分析】本題是一個由三步才能完成的事件,共有6×6×6=216種結(jié)果,a,b,c正好是直角三角形三邊長,則它們應(yīng)該是一組勾股數(shù),在這216組數(shù)中,找出勾股數(shù)的情況,因而得出是直角三角形三邊長的概率即可.【詳解】本題是一個由三步才能完成的事件,共有6×6×6=216種結(jié)果,每種結(jié)果出現(xiàn)的機會相同,a,b,c正好是直角三角形三邊長,則它們應(yīng)該是一組勾股數(shù),在這216組數(shù)中,是勾股數(shù)的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6種情況,因而a,b,c正好是直角三角形三邊長的概率是.故選:C.【點睛】本題主要考查了等可能事件的概率,屬于基礎(chǔ)題,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比;3,4,5為三角形三邊的三角形是直角三角形.10、C【分析】用3的倍數(shù)的個數(shù)除以數(shù)的總數(shù)即為所求的概率.【詳解】解:∵1到10的數(shù)字中是3的倍數(shù)的有3,6,9共3個,∴卡片上的數(shù)字是3的倍數(shù)的概率是.故選:C.【點睛】本題考查概率的求法.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.二、填空題1、c>a>b【分析】根據(jù)概率公式分別求出各事件的概率,故可求解.【詳解】依題意可得從該班同學的學號中隨意抽取1名同學,設(shè)這名同學是女生的可能性為,這名同學喜歡數(shù)學的可能性為,這名同學喜歡體育的可能性為,∵>>∴a,b,c的大小關(guān)系是c>a>b故答案為:c>a>b.【點睛】本題考查概率公式的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.2、【分析】由題意,用一等獎的份數(shù)除以全班學生數(shù)即為所求的概率.【詳解】解:根據(jù)題意分析可得:共50分設(shè)計方案,擬評選出10份為一等獎,那么該班某同學獲一等獎的概率為:.故答案為:.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.3、【分析】直接利用概率公式求出P1,P2的值,進而得出答案.【詳解】解:由題意可得出:一枚質(zhì)地均勻的骰子的六個面上分別刻有1~6的點數(shù),偶數(shù)有2、4、6共3個,奇數(shù)有1、3、5共3個,拋到偶數(shù)的概率為P1=;拋到奇數(shù)的概率為P2=,故P1與P2的大小關(guān)系是:P1=P2.故答案為:P1=P2.【點睛】本題主要考查了概率公式的應(yīng)用,熟練利用概率公式求出是解題關(guān)鍵.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.4、【分析】根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:∵袋子中共有10個小球,其中紅球有5個,∴摸出一個球是紅球的概率是,故答案為:.【點睛】此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A).5、##【分析】根據(jù)概率的意義直接回答即可.【詳解】解:∵每次拋擲硬幣正面朝上的概率均為,且三次拋擲相互不受影響,∴拋擲一枚質(zhì)地均勻的硬幣,若第一次是正面朝上,第二次也是正面朝上,則第三次正面朝上的概率為,故答案為:.【點睛】此題考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、【解析】7、【分析】根據(jù)簡單概率的概率公式進行計算即可,概率=所求情況數(shù)與總情況數(shù)之比.【詳解】解:共有5中等可能結(jié)果,其中大于2的有3種,則從中隨機摸出一個小球,其標號大于2的概率為故答案為:【點睛】本題考查了簡單概率公式的計算,熟悉概率公式是解題的關(guān)鍵.8、【分析】直接根據(jù)概率公式計算即可.【詳解】解:抽中甲的可能性為,故答案為:.【點睛】本題考查了概率公式的簡單應(yīng)用,熟知:概率=所求情況數(shù)與總情況數(shù)之比是關(guān)鍵.9、04【分析】(1)朝上的數(shù)字相乘為7是不可能發(fā)生的,據(jù)此即可求解;(2)根據(jù)摸到白球的概率公式,列出方程求解即可.【詳解】解:(1)朝上的數(shù)字相乘為7是不可能發(fā)生的.故“同時投擲兩枚骰子,朝上的數(shù)字相乘為7”的概率是0.故答案為:0;(2)不透明的布袋中的小球除顏色不同外,其余均相同,共有10個小球,設(shè)其中白色小球x個,根據(jù)概率公式知:P(白色小球)==40%,解得:x=4.故答案為:4.【點睛】本題主要考查了概率公式的應(yīng)用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.10、##【分析】用列舉的方法一一列出可能出現(xiàn)的情況,進而即可求得恰好是紅球的概率.【詳解】解:根據(jù)題意,可能出現(xiàn)的情況有:紅球;紅球;紅球;黑球;黑球;則恰好是紅球的概率是,故答案為:.【點睛】本題主要考查了簡單概率的計算,通過列舉法進行計算是解決本題的關(guān)鍵.三、解答題1、(1)P(指向數(shù)字5);(2)P(指向偶數(shù));(3)(答案不唯一)自由轉(zhuǎn)動轉(zhuǎn)盤,當它停止時,指針指向的數(shù)字不大于4時,自己獲勝【分析】(1)轉(zhuǎn)盤被平均分成6等份,轉(zhuǎn)到每個數(shù)字的可能性相等,共有6種可能結(jié)果,指針指向數(shù)字5的只有1種,由概率公式可得;(2)轉(zhuǎn)盤被平均分成6等份,轉(zhuǎn)到每個數(shù)字的可能性相等,共有6種可能結(jié)果,指針指向數(shù)字偶數(shù)的有2,4,6,共3種,由概率公式可得;(3)由獲勝概率為,由概率公式可得有4種能性,從而設(shè)計出指針指向的數(shù)字不大于4獲勝;【詳解】解:(1)轉(zhuǎn)盤被平均分成6等份,轉(zhuǎn)到每個數(shù)字的可能性相等,共有6種可能結(jié)果,指針指向數(shù)字5的只有1種,由概率公式可得:P(指向數(shù)字5);(2)轉(zhuǎn)盤被平均分成6等份,轉(zhuǎn)到每個數(shù)字的可能性相等,共有6種可能結(jié)果,指針指向數(shù)字偶數(shù)的有2,4,6,共3種,由概率公式可得:P(指向偶數(shù));(3)設(shè)計游戲為:指針指向的數(shù)字不大于4獲勝,其獲勝概率為,理由如下:轉(zhuǎn)盤被平均分成6等份,轉(zhuǎn)到每個數(shù)字的可能性相等,共有6種可能結(jié)果,指針指向的數(shù)字不大于4有1,2,3,4,共4種,由概率公式得:P(指向數(shù)字不大于4).【點睛】本題主要考查隨機事件及其概率的計算,列舉出所有等可能出現(xiàn)的結(jié)果情況及所求事件包含的情況數(shù)是計算相應(yīng)事件發(fā)生概率的關(guān)鍵.2、(1)6種方案;(2)甲廠家的品種粽子被選中的概率是.【分析】(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果;(2)由(1)可求得甲廠家的B品種粽子被選中的情況,再利用概率公式即可求得答案.【詳解】解:(1)畫樹狀圖如下:一共有6種選購方案,分別是AD、AE、BD、BE、CD、CE,(2)(品種粽子被選中).答:甲廠家的品種粽子被選中的概率是.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.3、(1)40;(2)圖見解析,135°;(3).【分析】(1)用A等級的人數(shù)除以所占的百分比即可;(2)計算出D等級的人數(shù),用360°乘以B等級所占的百分比即可;(3)用女生人數(shù)除以總?cè)藬?shù)即可得出抽到女生的概率.【詳解】解:(1)共抽取的學生數(shù)是:10÷25%=40(名).故答案為:40.(2)扇形統(tǒng)計圖中B等級對應(yīng)的圓心角的度數(shù)是360°135°.條形統(tǒng)計圖如圖:D等級的人數(shù)=40-15-10-10=5(3)∵A等級中共有10人,其中有4名女生,∴抽到女生的概率是.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及概率的知識.用到的知識點為:概率=所求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 練與測初中數(shù)學試卷
- 啟東九上答案數(shù)學試卷
- 2025年健康保健服務(wù)項目合作計劃書
- 歷年職專數(shù)學試卷
- 浦外高中直升數(shù)學試卷
- 南充市八上期中數(shù)學試卷
- 南充高一下數(shù)學試卷
- 曲阜七年級數(shù)學試卷
- 馬鞍山市初一下數(shù)學試卷
- 毛織生產(chǎn)節(jié)能設(shè)備選型分析報告
- 小學英語名詞單數(shù)變復(fù)數(shù)的語法規(guī)則及練習題含答案
- 城市橋梁養(yǎng)護技術(shù)規(guī)范
- 玉米運輸合同協(xié)議書范本(2024版)
- QHSE管理體系內(nèi)部審核檢查表(2篇)
- MTT 386-2011 煤礦用電纜阻燃性能的試驗方法和判定規(guī)則(非正式版)
- 《工裝夾具設(shè)計》課程標準
- 咨詢顧問服務(wù)勞務(wù)合同
- 產(chǎn)前篩查年度質(zhì)控分析報告
- 新型智慧操場建造方案
- 海水養(yǎng)殖產(chǎn)品種苗相關(guān)項目實施方案
- 雅思英語單詞詞匯量8000
評論
0/150
提交評論