2024-2025學(xué)年八年級數(shù)學(xué)下學(xué)期期末模擬卷【重慶專用測試范圍:人教版八年級下冊全部】(全解全析)_第1頁
2024-2025學(xué)年八年級數(shù)學(xué)下學(xué)期期末模擬卷【重慶專用測試范圍:人教版八年級下冊全部】(全解全析)_第2頁
2024-2025學(xué)年八年級數(shù)學(xué)下學(xué)期期末模擬卷【重慶專用測試范圍:人教版八年級下冊全部】(全解全析)_第3頁
2024-2025學(xué)年八年級數(shù)學(xué)下學(xué)期期末模擬卷【重慶專用測試范圍:人教版八年級下冊全部】(全解全析)_第4頁
2024-2025學(xué)年八年級數(shù)學(xué)下學(xué)期期末模擬卷【重慶專用測試范圍:人教版八年級下冊全部】(全解全析)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024-2025學(xué)年八年級數(shù)學(xué)下學(xué)期期末模擬卷

(重慶專用)

(考試時間:120分鐘試卷滿分:150分)

注意事項:

1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。

2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑。如需改動,用橡

皮擦干凈后,再選涂其他答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上。寫在本試卷上無效。

3.考試結(jié)束后,將本試卷和答題卡一并交回。

4.測試范圍:人教版八年級下冊全部。

5.難度系數(shù):0.80?

一、選擇題(本題共10小題,每小題4分,共40分。在每小題給出的四個選項中,只有一項是符合題目

要求的。)

1.下列二次根式中,屬于最簡二次根式的是()

A.后B.扇C.Va2-4D.4

【答案】C

【分析】根據(jù)最簡二次根式定義進(jìn)行判定即可得到答案.

【詳解】解:A、而邛二也,不是最簡二次根式,故A不符合題意;

V22

B、"防=3而,不是最簡二次根式,故B選項不符合題意;

C、,。是最簡二次根式,故C選項符合題意;

D、導(dǎo)警,不是最簡二次根式,故D選項不符合題意.

故選:C.

2.下列各圖能表示y是x的函數(shù)的是()

【答案】C

【分析】根據(jù)函數(shù)的概念可直接進(jìn)行排除選項.

【詳解】解:A、B、D都不是函數(shù),因為一個x的值對應(yīng)有多個y的值,C選項符合函數(shù)的概念,

故選:C.

3.甲、乙、丙、丁四人進(jìn)行射擊測試,他們在相同條件下各射擊10次,成績(單位:環(huán))統(tǒng)計如下表所

示,若從這四人中,選出一位成績較好且狀態(tài)穩(wěn)定的選手參加比賽,那么應(yīng)選()

甲乙丙T

平均數(shù)9.59.69.59.6

方差0.250.250.270.28

A.甲B.乙C.丙D.丁

【答案】B

【分析】方差是反映一組數(shù)據(jù)的波動大小的數(shù)量,方差越小,數(shù)據(jù)越穩(wěn)定;平均數(shù)越大,成績越好,據(jù)此

作答即可.

【詳解】:?乙的平均數(shù)最大,方差最小,

乙的成績較好且狀態(tài)穩(wěn)定,

故選:B.

4.下列命題是真命題的是()

A.三個角相等的平行四邊形是矩形B.對角線相等的四邊形是矩形

C.平行四邊形的對角線互相垂直D.對角線互相垂直的四邊形是菱形

【答案】A

【分析】根據(jù)菱形的判定方法,矩形的判定方法以及平行四邊形的性質(zhì)對各選項分析判斷即可得解.

【詳解】解:A、三個角相等的平行四邊形是矩形,故本項是真命題;

B、對角線相等的平行四邊形是矩形,故本項是假命題;

C、平行四邊形的對角線互相平分,故本項是假命題;

D、對角線互相垂直的平行四邊形是菱形,故本項是假命題;

故選:A.

5.如圖,菱形N8CD中,£、尸分別是N8、NC的中點(diǎn),若EF=4,則菱形的周長為()

A.48B.32C.16D.12

【答案】B

【分析】由三角形的中位線定理可得8C=8,由菱形的性質(zhì)可求出菱形N8C。的周長.

【詳解】解::點(diǎn)£,尸分別是/C的中點(diǎn),

:.EF=^BC,

.?.3C=2Eb=2x4=8,

:四邊形是菱形,

:.AB=BC=CD=AD=8,

菱形/BCD的周長=32,

故選:B.

6.估計(2&i+J值[加的值在()

A.7和8之間B.8和9之間C.9和10之間D.10和11之間

【答案】B

【分析】本題考查二次根式的混合運(yùn)算,無理數(shù)估算大小,熟練掌握二次根式的混合運(yùn)算法則是解題的關(guān)

鍵.

先去括號,再運(yùn)用二次根式除法法則計算,然后估算無理數(shù)大小即可.

【詳解】解:(2屈+VS)+應(yīng)

=2718-72+714^-72

=2jl8+2+J14+2

=6+yfl

V2<V7<3

/.8<6+V7<9

故選:B.

7.如圖,把菱形4BC。向右平移至。C斯的位置,EGLAB,垂足為G,EG與CD相交于點(diǎn)K,GD的

延長線交所于點(diǎn)〃,連接則下列結(jié)論:?BG=AB+HF-,@DG=DE;?ZDHE=^ZBAD;@ZB=Z

DEF,其中正確結(jié)論的個數(shù)是()

C.3個D.4個

【答案】C

【分析】首先證明△ADGgZkFDH,再利用菱形的性質(zhì)、直角三角形斜邊中線的性質(zhì)即可一一判斷.

【詳解】解:?菱形N5CD向右平移至。CE尸的位置,

;.AB〃CD〃EF,AD=CD=DF,

.".ZGAD=ZF,

VZADG=ZFDH,

.?.△ADG絲△FDH,

;.DG=DH,AG=FH,

Z.BG=AB+AG=AB+HF,故①正確,

VEG±AB,

.".ZBGE=ZGEF=90°,

又:DG=DH,

.\DE=DG=DH,故②正確,

.".ZDHE=ZDEH,

VZDEH=yZCEF,ZCEF=ZCDF=ZBAD,

.*.ZDHE=|ZBAD,故③正確,

;NB=/DCE,/CED=NCDE=/DEF=NDHE,

/.ZDCE=ZEDH,

.?.NB=NEDH,

若NB=NDEF,貝l|NEDH=ND£F=NDHE,那么△DHE是等邊三角形,

但題目中沒有明確ADHE是等邊三角形,故④錯誤.

故選:C.

8.在全民健身越野賽中,甲、乙兩選手的行程y(km)隨時間x(h)變化的圖象(全程)如圖所示.給出下列

四種說法:①起跑后lh內(nèi),甲在乙的前面;②第lh兩人都跑了10km;③甲比乙先到達(dá)終點(diǎn);④兩人都跑

了20km.其中正確的是()

A.①B.①②C.①②④D.②③④

【答案】C

【分析】根據(jù)圖象可以直接判斷①②正確,③錯誤;先求出乙跑的直線解析式,然后將x=2代入求出y的

值,即可求出兩人跑的總路程,判斷出④正確.

【詳解】解:①起跑lh內(nèi),甲在乙的前面,故①正確;

②在跑了lh時,乙追上甲,此時都跑了10km,故②正確;

③乙比甲先到達(dá)終點(diǎn),故③錯誤;

④設(shè)乙跑的直線解析式為:y=kx,將點(diǎn)(MO)代入得:無=10,

...乙跑的直線解析式為:y=iox,

把x=2代入得:y=20,

二兩人都跑了20km,故④正確;

綜上分析可知,正確的有①②④.

故選:C.

9.如圖,點(diǎn)£為正方形ABCD外一點(diǎn),且ED=CD,連接NE,交BD于點(diǎn)、F.若NCD£=38。,則NBFC

的度數(shù)為()

A.71°B,72°C.81°D.82°

【答案】A

【分析】根據(jù)正方形的性質(zhì),得AD=CD,ZADC=90°,得乙4DB=NCDB=45°;根據(jù)即=CZ>,得

AD=DE;根據(jù)等邊對等角,ZCDE=38°,可求出ND/E;根據(jù)三角形的內(nèi)角和,得N4FD;根據(jù)A4DF

和△CD尸全等,得乙4FD=NCFD,即可求出,5FC的角度.

【詳解】???四邊形N3CD正方形

/.AD=CD,ZADC=90°

ZADB=NCDB=45°

:ED=CD

:.AD=DE

:.NDAE=NDEA

?:/CDE=38。

:.ZADE=90°+38°=128°

:.ZDAE=/DEA=26。

.?.在尸中,ZDAF+ZAFD+ZADF=180。

:.260+ZAFD+45°=180°

.?.47*=109。

:在ZvlDR和中

AD=CD

<NADF=ZCDF

DF=DF

△ADF=ACDF

:.ZAFD=ZCFD=109°

:.ZBFC=180°-ZAFD=180°-109°

:.ZBFC=71°.

故選:A.

10.“黑白雙雄,縱橫江湖;雙劍合壁,天下無敵”.其意指兩個人合在一起,取長補(bǔ)短,威力無比.在二次

根式中也有這樣相輔相成的例子.$n(V5+V2)(V5-V2)=(V5)2-(V2)2=3,它們的積是有理數(shù),我們說這

兩個二次根式互為有理化因式,在進(jìn)行二次根式計算時利用有理化因式可以去掉根號,令4=6(〃為非

負(fù)數(shù)),貝!1(4"+4)(4?-4)=(^■十6'一癡)=(^^)=m-n-,

11y[m—y[ny[m—y[n

不廠所+網(wǎng)=即+?)(西—.廣丁丁?則下列選項正確的有()個

3

①若。是4的小數(shù)部分,則—的值為5-2;

a

②若丁冬--三7=8指+4(其中權(quán)c為有理數(shù)),則加=-15;

③,4+10-J4-2=2,則J4+IO+J4-2=6

?1111,A/2023

24+434+2444+3420234022+202240232023

A.4B.3C.2D.1

【答案】B

【分析】先估算出2<近<3,則。=e-2,然后對巳進(jìn)行分母有理化即可判斷①;根據(jù)

a

--7三-=86+4推出石。-c)+2(6+c)=8后+4,正在由權(quán)c為有理數(shù),得到方程組,一‘二:

力?5-^4'-^4[。?!?

解方程組即可得到答案;只需要根據(jù)“4+io-j4-2)“4+io+j4-2)=2Q4+io+j4—2b推出

4+10-(4-2)=2(74+10+74^2),即可判斷③;證明(.+iW〃L〃+廣斗然后對原

式裂項即可判斷④.

【詳解】解:由題意得4=近,

V4<7<9,

;?2<V7<3,

:.a=sJl-2,

3.33(6+2)3(近+2)

廠工1一由一2乂嶼+2)一下1一"故①錯誤;

bc=8君+4,

次一44+4

b=84+4,

*V5-V4石+"

5-4

,4s(6-c)+2伍+c)=8&)+4,

?:b、。為有理數(shù),

6c=8

[b+c=2

\b=5

jc=-3,

bc=-15f故②正確;

74+10-74^2=2,

(V4+10-74^2)(V4+10+74^2)=2(V4+io+74^2)

A+10-(4-2)=2(74+10+74^2),

4+10-4+2=2(74+10+74^2),

,4+10+14-2=6,故③正確;

1(〃+1)G-n1n+1

(〃++n[n+1[(幾++ndn+-ny/n+1J

(n+\)G-n《n+\

(〃+1『n-n2(H+1)

(H+1)VH-HA/H+1

+1)

y/nJ〃+l

----------,

n〃+1

1111

-------1---------1---------F…H-----------------

24]+3^2+2444+3,42023,2022+2022^42023

_ViV2V2V3V|_V?720222023

"ir-2r_3r2022-一2022

=>,故④正確:

故選B.

二、填空題(本題共8小題,每小題4分,共32分.)

11.已知>=(僅-3戶+9-加2是正比例函數(shù),貝1]m=.

【答案】-3

【分析】本題考查正比例函數(shù)的定義,熟練掌握正比例函數(shù)的常數(shù)項為0是解題的關(guān)鍵.

根據(jù)正比例函數(shù)的定義可得加-3W0,9-〃/=0,即可求得結(jié)果.

【詳解】解:;一次函數(shù)>=(〃L3)X+9-/是正比例函數(shù),

.j9-m2=0

[加-3w0'

解得:加=一3,

故答案為:-3.

12.如圖,在四邊形45CD中,DELAC,BFLAC,垂足分別為點(diǎn)E,F,連接5瓦即,請你只添加一個

條件(不另加輔助線),使得四邊形。為平行四邊形,你添加的條件是

【答案】DE=BF(答案不唯一)

【分析】本題考查添加條件使四邊形成為平行四邊形,根據(jù)平行四邊形的判定方法,添加條件即可.

【詳解】解:添加條件為:DE=BF,

?:DE1AC,BFLACf

:.DE〃BF,

*:DE=BF,

???四邊形QEBE為平行四邊形;

故答案為:DE=BF.

’1”

|----X+〃〉JTIX—31Tl

13.如圖,直線V=機(jī)與>=-+幾的交點(diǎn)的坐標(biāo)為5,則關(guān)于x的不等式組,2的解

[mx—3m>0

集是

【答案】3cx<5

【分析】根據(jù)圖象分別求得兩個一元一次不等式的解集,即可求不等式組的解集.

【詳解】解:..?直線V=與y=-;x+〃的交點(diǎn)的坐標(biāo)為5,

.,.由圖象可知,--x+n>mx-3m^i,解得x<5;

2

:由圖象可知,V=?Jx-3m隨x的增大而增大,

m>0

3一3加〉0時,解得%>3;

3<x<5.

故答案為:3〈無<5.

14.張老師隨機(jī)抽取6名學(xué)生,測試他們的文字輸入能力,測得他們每分鐘打字個數(shù)分別為:

100,80,80,90,60,70,那么這組數(shù)據(jù)的方差是.

【答案】—

【分析】根據(jù)方差的計算公式進(jìn)行計算即可得出答案.

100+80+80+90+60+70

【詳解】解:這組數(shù)據(jù)的平均數(shù)為=80,

6

這組數(shù)據(jù)的方差為

(100-80)2+2(80-80)2+(90-80)2+(60-80)2+(70-80)2_500

6―亍

500

故答案為:亍

15.我國是最早了解勾股定理的國家之一,早在三千多年前,周朝數(shù)學(xué)家商高就提出了“勾三、股四、弦五”

這一結(jié)論.勾股定理與圖形的面積存在密切的關(guān)系,如圖是由兩個直角三角形和三個正方形組成的圖形,

若尸的面積為6,AC=13,BC=12,則陰影部分的周長為.

【答案】28

【分析】本題主要考查了勾股定理的運(yùn)用、正方形的性質(zhì)等知識點(diǎn),掌握勾股定理的內(nèi)容是解題的關(guān)鍵.

先根據(jù)勾股定理和正方形的性質(zhì)可得即=奶=5,再根據(jù)勾股弦圖可得尸加+尸產(chǎn)=25,再結(jié)合RtAPEF的

面積為6可得2尸E.PF=24,再運(yùn)用完全平方公式可得PE+尸尸=7,最后再求周長即可.

【詳解】解:根據(jù)勾股定理得:AB=^AC2-BC2=^\32-n2=5^

:.EF=AB=5,

???正方形AEFB的面積是25,

PE1+PF2=25,

?.?RLPE尸的面積為6,即工尸K?尸P=6,

2

2PE-PF=24,

:.(PE+PF)2=PE2+PF2+2PEPF=A9,^PE+PF=1,

,陰影部分的周長為4(PE+P尸)=28.

故答案為:28.

1+X〈Q

16.若不等式組x+9八x+11有解,則實(shí)數(shù)Q的取值范圍是,

+1>1-----------

I2-----------3

【答案】Q-36

1+x<a?

【詳解】解:,x+9x+1辦,

+1>[②

I2-----------3

由①得,x<ia-1,由②得,x>-37,

l+x<a

;不等式組<x+9x+1有解,

-----+1>--------1

12-----------3

a-1>-37,a>-36.

故答案為。>-36.

17.如圖,在矩形45C。中,/5=10,5C=12,M是45邊上的中點(diǎn),N是5C邊上的一動點(diǎn).連接MN,

將aBNIN沿折疊,點(diǎn)8的對應(yīng)點(diǎn)為點(diǎn)E,連接EC.當(dāng)為直角三角形時,5N的長為.

【分析】根據(jù)直角的不同可分兩種情況討論:①當(dāng)NSVC=90。時,則NBNE=90。,根據(jù)折疊的性質(zhì)和矩形

的性質(zhì)可推出/8W=NSW=45。,以此得到===即可求解;②當(dāng)/NEC=90。時,可

得E,C三點(diǎn)共線,設(shè)BN=NE=x,貝iJCN=12—x,根據(jù)勾股定理可得.=癡廬7^=13,則

EC=MC-ME=13-5=8,再根據(jù)勾股定理CN?二的2十月仁,列出方程,求解即可.

【詳解】解:①如圖,當(dāng)NEVC=90。時,

:.ZBNE=90°,

根據(jù)折疊的性質(zhì)可知,ZBNM=ZENM,

:.ZBNM+ZENM=900,

:.ZBNM=ZENM=45°,

???ZB=90°,

ABMN=4BNM=45°,

:.BM=BN=-AB=5-

2

②如圖,當(dāng)NNEC=90。時,

根據(jù)折疊的性質(zhì)可知,ZS=4ffiN=90。,BM=ME=5,BN=NE,

:.M,E,C三點(diǎn)共線,

設(shè)BN=NE=x,則CV=12-x,

在用ABMC中,

MC=y)BM2+BC2=752+122=13,

EC=MC—ME=13—5=8,

在RUNEC中,

由勾股定理得CN?=N£2+EC2,

即(12-XJ=x2+82,

解得:X=y,

:.BN=,

3

綜上,BN的長為5或5.

故答案為:5或與■.

18.如果一個自然數(shù)M的個位數(shù)字不為0,且能分解成/xg,其中N與8都是兩位數(shù),/與8的十位數(shù)字

相同,個位數(shù)字之和為8,則稱數(shù)M為“八喜數(shù)”,把數(shù)M分解成初=/x8的過程,稱為“八喜分解”.例如

572=22x26,22和26的十位數(shù)字相同,個位數(shù)字之和為8,故572是“八喜數(shù)”.判斷1472(填“是”或“不

是“)“八喜數(shù)".把一個“八喜數(shù)"V進(jìn)行“八喜分解",即=/與3之和記為尸(/),/與3之差記

為。(M),令,當(dāng)G(")=[錯卜被8整除時,則滿足條件的M的最大值與最小值的差是,

【答案】不是3528

【分析】本題考查了因式分解的新定義題,主要考查了列代數(shù)式,以及因式分解的應(yīng)用,一元一次方程的

應(yīng)用,關(guān)鍵是準(zhǔn)確理解“八喜數(shù)”含義,能把/和2用含。和6的式子表示出來.讀懂題意,按照題目給出

的新定義,先因式分解,再判斷1472是不是“八喜數(shù)”即可;設(shè)/的十位數(shù)為a,個位數(shù)為b,則3為10〃+8-6,

根據(jù)G(M)能被8整除求出。的可能的值,再由。的值求出b的值,即可得出答案.

【詳解】解:;900<1472<1600

.11472分解的兩個兩位數(shù)的十位為3,

?.T472的個位數(shù)為2,

二分解的兩個兩位數(shù)的個位數(shù)上的組合就有1,2或2,6或3,4或4,8或6,7或者8,9,

???個位數(shù)字之和為8,

...兩個兩位數(shù)的個位數(shù)上分別為2,6,

即32x36=1152^1472

故1472不是“八喜數(shù)”;

設(shè)/的十位數(shù)為。,個位數(shù)為6,

則/=10。+6,10。+8-6,,

A+B=2,Qa+8,\A-B\=\2b-^\,

;G(M)=|徐卜埼能被8整除,

20a+8jj

???而3=8o左,后為整數(shù),

ZP—o

5a+2=-4|)4后=4k(\b-4|)

/.5a+2是4的倍數(shù),

,滿足條件的。有2,6,

若。=2,貝U區(qū)畫=8左,彳為整數(shù),

?Y^—\=k

?邛一4|

.,.|6-4|是3的因數(shù),

b—A——3,—1,1,3,

.,.滿足條件的6有1,3,5,7,

:.A=21,3=27或N=23,3=25或/=25,8=23或/=27,5=21,

4x2=567或575,

128,

若a=6,貝U儂_曠防/為整數(shù),

”=左

??|6一4|

是8的因數(shù),

b—4=—8,—4,—2,—1,1,2,4,8,

二滿足條件的6有2,3,5,6,

A=62,3=66或/=63,8=65或N=65,3=63或/=66,B=62,

:.Nx3=62x66=4092或4095,

綜上,M的值為567或575或4092或4095.

所以M的最大值與最小值的差=4095-567=3528

故答案為:不是,3528

三、解答題(本大題共8個小題,第20題、21題各8分,第26題12分,其余每小題10分,共78分.解

答應(yīng)寫出文字說明、證明過程或演算步驟.)

19.計算:

(1)V48-(-V3)-J1XV12+V24;

⑵已知》=百+1/=6-1,求代數(shù)式/了-q?的值.

【詳解】(1)解:原式=々48〃3一412+2指

=—4—^6+2-\/~6

=V6—4;

(2)解:,**x=V3+\,y—V3—1,

...xy=(V3+l)(V3-l)=2,x-y=(g+l)-(51)=2,

x2y-xy2=xy(x-^)=2x2=4.

20.如圖,在平行四邊形MCD中,點(diǎn)E在線段4。上,AE=AB,完成下列作圖和證明過程.

B,C

AL--------------------fD

E

(1)尺規(guī)作圖:作的角平分線交線段8c于點(diǎn)尸,連接BE,EF(保留作圖痕跡,不寫作法);

(2)求證:AFLBE.

證明:':BF//AE,

又AF平分NBAD,NBAF=NEAF.

:.AB=FB.

又;AB=AE,:.FB〃AE且FB=AE.

又,/45=/E,.?.四邊形ABFE為菱形.

AFLBE(④).

【詳解】(1)解:如圖所示,

(2)證明:???BF//AE,

ABFA=NEAF,

又;AF平分NB4D,

ZBAF=ZEAF,

ZBAF=ZBFA,

AB=FB,

又;AB=AE,

:.FB〃AE且FB=AE,

四邊形/班更為平行四邊形,

又;AB=AE,

四邊形/即X為菱形,

:.AFVBE(菱形對角線互相垂直);

故答案為:NBFA=NEAF;ZBAF=ZBFA;四邊形NAFE■為平行四邊形;菱形對角線互相垂直;

21.學(xué)校為了解學(xué)生“學(xué)以致用”的情況,組織八、九年級學(xué)生開展了一次生活中的物理知識競賽,成績分別

為/,B,C,。四個等級,其中相應(yīng)等級的得分依次記為10分,9分,8分,7分.學(xué)校分別從八、九年級

各隨機(jī)抽取25名學(xué)生的競賽成績整理并繪制成如下統(tǒng)計圖表,請根據(jù)提供的信息解答下列問題:

八年級競賽成績統(tǒng)計圖

2

0

8

6

4

2

0

年級八年級九年級

平均分8.768.76

中位數(shù)9A

眾數(shù)B10

方差1.061.38

(1)根據(jù)以上信息可以求出:a=,b=,并把八年級競賽成績統(tǒng)計圖補(bǔ)充完整;

(2)在這兩個年級中,成績更穩(wěn)定的是.(填“八年級”或“九年級”);

(3)已知該校八年級有800人、九年級有1200人參加本次知識競賽,且規(guī)定不低于9分的成績?yōu)閮?yōu)秀,請估

計該校八、九年級參加本次知識競賽成績?yōu)閮?yōu)秀的學(xué)生共有多少人?

【詳解】(1)解:???八、九年級各抽取25名學(xué)生的競賽成績,

??.九年級中位數(shù)為從小到大排序后的第13名同學(xué)的成績,

由條形統(tǒng)計圖可知;從小到大排序后的第13名同學(xué)的成績在等級C中,

故九年級中位數(shù)。=8,

由題可知:八年級等級C人數(shù)為:25-6-12-5=2(人),

,等級8的人數(shù)最多,

???八年級眾數(shù)6=9,

補(bǔ)全條形統(tǒng)計圖如下:

八年級競賽成績統(tǒng)計圖

(2)解:???八、九年級平均分相同,而八年級中位數(shù)大于九年級中位數(shù),八年級方差小于九年級方差,

???八年級成績更好,更穩(wěn)定;

故答案為:八年級;

(3)解:800x^|^+1200x(44%+4%)=1152(人).

,兩個年級成績?yōu)閮?yōu)秀的學(xué)生共有1152人.

22.科學(xué)計算器是一種常見的生活和學(xué)習(xí)工具,它有著重要的作用.根據(jù)市場需求,某文具店代售42兩

種品牌的科學(xué)計算器,下表為其中兩次的進(jìn)貨情況:

進(jìn)貨數(shù)量(個)

項目進(jìn)貨花費(fèi)(元)

A品牌5品牌

第一次1015510

第二次1520720

(1)求4,2兩種品牌科學(xué)計算器的進(jìn)貨單價;

(2)該文具店某次進(jìn)貨時,恰好趕上廠家的優(yōu)惠活動,活動有兩種方案:

方案一:購買/、2兩種品牌的科學(xué)計算器,每滿10個贈送2個3品牌科學(xué)計算器;

方案二:/、2兩種品牌的科學(xué)計算器均按8.5折計算.

(注:廠家規(guī)定,兩種優(yōu)惠方案不能同時使用)

若該文具店老板計劃購進(jìn)4,8兩種品牌的科學(xué)計算器共50個,且兩種品牌的數(shù)量均不少于20個.請你幫

老板算一算,如何購買能使花費(fèi)最少?

【詳解】(1)解:設(shè)48兩種品牌科學(xué)計算器進(jìn)貨單價分別為x元和夕元,

根據(jù)題意可得:

J10x+15y=510

[15x+20^=720)

[x=24

解得IS-

答:A,2兩種品牌科學(xué)計算器進(jìn)貨單價分別為24元和18元;

(2)解:設(shè)總花費(fèi)為w元,購買機(jī)個/品牌科學(xué)計算器,則購買(50-機(jī))個5品牌科學(xué)計算器.

選擇方案一購買:根據(jù)題意可知,最少花費(fèi)為購買任意42個科學(xué)計算器,贈送8個8品牌科學(xué)計算器,則

需花錢購買B品牌科學(xué)計算器的數(shù)量為42-加,

/.最少花費(fèi)w=24加+18x(42-7”)=6加+756,

6>0,根據(jù)題意可得,20<m<3Q,

二當(dāng)機(jī)=20時,總花費(fèi)最少,為6x20+756=876(元).

選擇方案二購買:最低花費(fèi)卬=[24加+18x(50-〃川x0.85=5.bn+765,

V5.1>0,根據(jù)題意可得20VaV30,

...當(dāng)加=20時,總花費(fèi)最少,為5.1x20+765=867(元).

876>867,

選擇方案二,購買20個/品牌科學(xué)計算器,30個8品牌科學(xué)計算器時,花費(fèi)最少.

23.如圖,小明站在看臺上的A處,測得旗桿頂端。的仰角為15。,當(dāng)旗桿頂端。的影子剛好落在看臺底部

8處時,太陽光與地面成60。角.已知N48C=60。,/8=4米,求旗桿的高度.(點(diǎn)A與旗桿及其影子

在同一平面內(nèi),C、B、后三點(diǎn)共線且旗桿與地面垂直,不考慮小明的身高)

【詳解】解:如圖,過A作空,CE于K,而48=4,ZABC=60°,

BK=2,AK=^AB--BK-=273-

過A作于而Z>E_LCE,

.?.四邊形4KE//為矩形,

:.HE=AK=2也,AH//KE,而ZD8E=60°,

/.ZLAB=ZABC=60°,ZALB=ZDBE=60°,ZBDE=30°,

:.為等邊三角形,

AL=AB=4,

設(shè)LH=x,則"=2x,DH=氐,

AH=4+x,

作。N=而NCLW=15。,

???ADAM=ZMDA=15。,

??.ZDMH=30°,

AM=DM=2DH=2氐,MH=^DM2-DH2=3x,

2y/3x+3x=4+x,

解得:X=G—1,

AZ)7/=V3(V3-1)=3-V3,

???DE=DH+HE=3-6+26=3+6;

.??旗桿的高度為(3+百)m.

24.在矩形/BCD中,45=4,/。=3,瓦尸分別在邊/。,/5上,^AE=\,AF=2,動點(diǎn)尸從點(diǎn)5出發(fā),以

每秒1個單位長度的速度沿著C一。運(yùn)動,到達(dá)。點(diǎn)停止運(yùn)動,設(shè)P點(diǎn)運(yùn)動時間為x秒,的面

積為4回答下列問題:

A,一二

(1)請直接寫出丁與%的函數(shù)表達(dá)式以及對應(yīng)的x的取值范圍;

(2)請在平面直角坐標(biāo)系中畫出這個函數(shù)的圖象,并寫出一條該函數(shù)的性質(zhì);

%

8

7

6

5

4

-3-

2

-1-

-10123456785

(3)結(jié)合圖象,直接寫出當(dāng)y<2時的X的取值范圍.(保留1位小數(shù),誤差不超過0.2)

【詳解】(1)解:當(dāng)0WxW3時,如圖所示:

??,矩形45CD中,AB=4,AD=34E=1,AF=2,

.?.AF=FB=2,DE=2,ZA=ZB=ZD=90。,

AD//BC,AB//CD,PB=x,

—(l+x)x4——xlx2——xxx2

2V722

=x+1;

當(dāng)3<xW7時,如圖

???矩形中,AB=4,AD=3AE=1,AF=2,

:.AF=FB=2,DE=2,ZA=ZB=ZD=90。,

AD//BC,AB//CD,PB=x,DP=7-x

y~S梯形4。尸尸一S&AEF_S^PBE

=—(2+7-x)x3--xlx2-—x(7-x)x2=x+—;

22222

x+l,(0<x<3)

綜上所述,y=<111”、

一5x+3,(3<xW7)

(2)根據(jù)題意,畫圖象如下:.

函數(shù)的性質(zhì)為:當(dāng)0<x<3時,夕隨x增大而增大;當(dāng)3<x<7時,y隨x增大而減小.

(3)根據(jù)圖象,得到OWxWLl或x=7.0時,》42.

25.如圖,一次函數(shù)了=履+6的圖象與反比例函數(shù)了=?的圖象在第二象限內(nèi)交于點(diǎn)/(-1,3),S(-3,a),

戶為x軸正半軸上一點(diǎn),連接尸/,PB,AZBP的面積為6.

(1)求加的值及一次函數(shù)的表達(dá)式;

(2)求點(diǎn)尸的坐標(biāo);

(3)若E為反比例函數(shù)圖象上的一點(diǎn),尸為x軸上一點(diǎn),是否存在點(diǎn)E,尸,使以E,F,P,8為頂點(diǎn)的

四邊形是平行四邊形?若存在,請求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

【詳解】(1)解:將/(一1,3)代入>=得%=-3,

X

3

??.反比例函數(shù)的表達(dá)式為歹=—-

x

3

將3(-3,0代入夕=一,得0=1,

將4(-1,3)和5(-3,1)分別代入歹=心+6,得

-k+b=3k=\

-3后+6=1'解得

6=4

一次函數(shù)的表達(dá)式為y=x+4;

(2)令x+4=0,貝?。輝=4

二?一次函數(shù)>=2x+5與x軸的交點(diǎn)坐標(biāo)為(-4,0),

設(shè)尸

???4(-1,3),5(-3,1),

S.ABP=(a+4)(Q+4)='(a+4)(為一力)=/(Q+4)(3—1)=Q+4=6,

..4=2,

,尸(2,0);

⑶設(shè)F(m,0),又尸(2,0),5(-3,1),

①如圖,當(dāng)點(diǎn)£在第四象限,點(diǎn)廠在x軸負(fù)半軸上時,存在口EFPB,此時尸尸,3E為對角線,5.PF,BE

的中點(diǎn)相互重合,

,一3_2+加

--2t—3=2+m

t=3

3,,即<一"o,解得

-----1-1m=-2

/0+0

22

.■.£(3,-1);

②當(dāng)點(diǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論