




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為(
)A.1個 B.2個 C.3個 D.4個2、如圖,在△ABC中,點G為△ABC的重心,過點G作DE∥BC,分別交AB、AC于點D、E,則△ADE與四邊形DBCE的面積比為()A. B. C. D.3、已知函數(shù)是反比例函數(shù),圖象在第一、三象限內(nèi),則的值是()A.3 B.-3 C. D.4、如圖,點A(2,t)在第一象限,OA與x軸所夾銳角為,tan=2,則t的值為(
)A.4 B.3 C.2 D.15、如果,那么的結(jié)果是(
)A. B. C. D.6、把拋物線向右平移2個單位,然后向下平移1個單位,則平移后得到的拋物線解析式是(
)A. B.C. D.二、多選題(7小題,每小題2分,共計14分)1、運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論正確的是(
)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時落地D.足球被踢出1.5s時,距離地面的高度是11m2、如圖,在⊙O中,AB為直徑,BC為切線,弦ADOC,直線CD交BA的延長線于點E,連接BD.下列結(jié)論正確的是(
)A.CD是⊙O的切線 B.CO⊥DBC.△EDA∽△EBD D.3、在Rt△ABC中,∠C=90°,∠A、∠B、∠C所對的邊分別為a、b、c,下列等式一定不能成立的有()A.sinA=sinB B.a(chǎn)=c?sinBC.sin2A+cos2B=1 D.sinA=tanA?cosA4、如圖,在△ABC中,點P為AB上一點,給出下列四個條件中能滿足△APC和△ACB相似的條件是(
)A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AB·CP=AP·CB5、如圖,AB為⊙O直徑,弦CD⊥AB于E,則下面結(jié)論中正確的是(
)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE6、已知:如圖,△ABC中,∠A=60°,BC為定長,以BC為直徑的⊙O分別交AB、AC于點D、E.連接DE、OE.下列結(jié)論中正確的結(jié)論是()A.BC=2DE B.D點到OE的距離不變 C.BD+CE=2DE D.AE為外接圓的切線7、如果α、β都是銳角,下面式子中不正確的是(
)A.sin(α+β)=sinα+sinβ B.cos(α+β)=時,α+β=60°C.若α≥β時,則cosα≥cosβ D.若cosα>sinβ,則α+β>90°第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,,,是⊙O上的三個點,四邊形是平行四邊形,連接,,若,則_____.2、如圖,是⊙O的內(nèi)接正三角形,點是圓心,點,分別在邊,上,若,則的度數(shù)是____度.3、如圖,△ABC中,∠ACB=90°,AB=5,AC=3,BC為半圓O的直徑,將△ABC沿射線CB方向平移得到△A1B1C1.當(dāng)A1B1與半圓O相切于點D時,平移的距離的長為_____.4、如圖是二次函數(shù)和一次函數(shù)y2=kx+t的圖象,當(dāng)y1≥y2時,x的取值范圍是_____.5、如圖,D是△ABC的邊BC上一點,,,.如果的面積為15,那么的面積為______.6、若二次函數(shù)的頂點在x軸上,則__________.7、如圖,點A是反比例函數(shù)y=(x>0)圖象上的一點,AB垂直于x軸,垂足為B,△OAB的面積為6.若點P(a,4)也在此函數(shù)的圖象上,則a=_____.四、解答題(6小題,每小題10分,共計60分)1、如圖1,某同學(xué)家的一面窗戶上安裝有遮陽篷,圖2和圖3是截面示意圖,CD是遮陽篷,窗戶AB為1.5米,BC為0.5米.該遮陽篷有伸縮功能.如圖2,該同學(xué)在夏季某日的正午時刻測得太陽光和水平線的夾角為60°,遮陽篷CD正好將進入窗戶AB的陽光擋??;如圖3,該同學(xué)在冬季某日的正午時刻測得太陽光和水平線的夾角為30°,將遮陽篷收縮成CD′時,遮陽篷正好完全不擋進入窗戶AB的陽光.(1)計算圖3中CD′的長度比圖2中CD的長度收縮了多少米;(結(jié)果保留根號)(2)如果圖3中遮陽篷的長度為圖2中CD的長度,請計算該遮陽篷落在窗戶AB上的陰影長度為多少米?(請在圖3中畫圖并標(biāo)出相應(yīng)字母,然后再計算)2、計算:(1)(2)3、如圖,矩形在平面直角坐標(biāo)系中,交軸于點,動點從原點出發(fā),以每秒1個單位長度的速度沿軸正方向移動,移動時間為秒,過點P作垂直于軸的直線,交于點M,交或于點N,直線掃過矩形的面積為.(1)求點的坐標(biāo);(2)求直線移動過程中到點之前的關(guān)于的函數(shù)關(guān)系式;(3)在直線移動過程中,第一象限的直線上是否存在一點,使是等腰直角三角形?若存在,直接寫出點的坐標(biāo);若不存在,說明理由4、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?5、如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于、兩點,拋物線經(jīng)過、兩點;(1)求拋物線的解析式;(2)點為軸上一點,點為直線上一點,過作交軸于點,當(dāng)四邊形為菱形時,請直接寫出點坐標(biāo);(3)在(2)的條件下,且點在線段上時,將拋物線向上平移個單位,平移后的拋物線與直線交于點(點在第二象限),點為軸上一點,若,且符合條件的點恰好有2個,求的取值范圍.6、如圖,Rt△ABO的頂點A是反比例函數(shù)的圖象與一次函數(shù)的圖象在第二象限的交點,AB⊥x軸于點B,且.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求一次函數(shù)與反比例函數(shù)圖象的兩個交點A,C的坐標(biāo).-參考答案-一、單選題1、C【解析】【分析】①由拋物線開口方向得到,對稱軸在軸右側(cè),得到與異號,又拋物線與軸正半軸相交,得到,可得出,選項①錯誤;②把代入中得,所以②正確;③由時對應(yīng)的函數(shù)值,可得出,得到,由,,,得到,選項③正確;④由對稱軸為直線,即時,有最小值,可得結(jié)論,即可得到④正確.【詳解】解:①∵拋物線開口向上,∴,∵拋物線的對稱軸在軸右側(cè),∴,∵拋物線與軸交于負半軸,∴,∴,①錯誤;②當(dāng)時,,∴,∵,∴,把代入中得,所以②正確;③當(dāng)時,,∴,∴,∵,,,∴,即,所以③正確;④∵拋物線的對稱軸為直線,∴時,函數(shù)的最小值為,∴,即,所以④正確.故選C.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項系數(shù)決定拋物線的開口方向和大?。?dāng)時,拋物線向上開口;當(dāng)時,拋物線向下開口;一次項系數(shù)和二次項系數(shù)共同決定對稱軸的位置:當(dāng)與同號時,對稱軸在軸左;當(dāng)與異號時,對稱軸在軸右.常數(shù)項決定拋物線與軸交點:拋物線與軸交于.拋物線與軸交點個數(shù)由判別式確定:時,拋物線與軸有2個交點;時,拋物線與軸有1個交點;時,拋物線與軸沒有交點.2、A【解析】【分析】連接AG并延長交BC于H,如圖,利用三角形重心的性質(zhì)得到AG=2GH,再證明△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)得到==,然后根據(jù)比例的性質(zhì)得到△ADE與四邊形DBCE的面積比.【詳解】解:連接AG并延長交BC于H,如圖,∵點G為△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE與四邊形DBCE的面積比=.故選:A.【考點】本題考查了三角形的重心與相似三角形的性質(zhì)與判定.重心到頂點的距離與重心到對邊中點的距離之比為2∶1.3、A【解析】【分析】根據(jù)反比例函數(shù)的定義建立關(guān)于m的一元二次方程,再根據(jù)反比例函數(shù)的性質(zhì)解答.【詳解】∵函數(shù)是反比例函數(shù),∴m2-10=-1,解得,m2=9,∴m=±3,當(dāng)m=3時,m-2>0,圖象位于一、三象限;當(dāng)m=-3時,m-2<0,圖象位于二、四象限;故選A.【考點】本題考查了反比例函數(shù)的定義和性質(zhì),對于反比例函數(shù)y=(k≠0),(1)k>0,反比例函數(shù)圖象在一、三象限;(2)k<0,反比例函數(shù)圖象在第二、四象限內(nèi).4、A【解析】【分析】根據(jù)點A的坐標(biāo),利用銳角三角函數(shù)定義求出t的值即可.【詳解】如圖,過點A作AB⊥x軸與點B,∵點A在第一象限,坐標(biāo)為(2,t),∴,在RT△AOB中,tan,則t=4,故選A.【考點】本題考查了三角函數(shù)的定義,熟練掌握定義即可求解.5、B【解析】【分析】根據(jù)比例的性質(zhì)即可得到結(jié)論.【詳解】∵=,∴可設(shè)a=2k,b=3k,∴==-.故選B.【考點】本題主要考查了比例的性質(zhì),解本題的要點根據(jù)題意可設(shè)a,b的值,從而求出答案.6、D【解析】【分析】直接根據(jù)“左加右減,上加下減”的原則進行解答即可.【詳解】由“左加右減”的原則可知,拋物線y=2x2向右平移2個單位所得拋物線是y=2(x?2)2;由“上加下減”的原則可知,拋物線y=2(x?2)2向下平移1個單位所得拋物線是y=2(x?2)2?1.故選D.【考點】本題考查了二次函數(shù)圖象與幾何變換,解題的關(guān)鍵是掌握二次函數(shù)圖象與幾何變換.二、多選題1、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設(shè)拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時,h=0,∴足球被踢出9s時落地,故C正確,∵t=1.5時,h=11.25,故D錯誤.∴正確的有②③,故選:BC【考點】本題考查二次函數(shù)的應(yīng)用、求出拋物線的解析式是解題的關(guān)鍵,屬于中考常考題型.2、ABC【解析】【分析】由切線的性質(zhì)得∠CBO=90°,首先連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對應(yīng)角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;根據(jù)全等三角形的性質(zhì)得到CD=CB,根據(jù)線段垂直平分線的判定定理得到即CO⊥DB;根據(jù)余角的性質(zhì)得到∠ADE=∠BDO,等量代換得到∠EDA=∠DBE,根據(jù)相似三角形的判定定理得到△EDA∽△EBD;根據(jù)相似三角形的性質(zhì)得到,于是得到ED?BC=BO?BE.【詳解】解:A.證明:連接DO.∵AB為⊙O的直徑,BC為⊙O的切線,∴∠CBO=90°,∵ADOC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵點D在⊙O上,∴CD是⊙O的切線;故選項正確,符合題意;B.證明:∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故選項正確,符合題意;C.證明:∵AB為⊙O的直徑,DC為⊙O的切線,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故選項正確,符合題意;D.證明:∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED?BC=BO?BE,故選項錯誤,不符合題意.故選:ABC.【考點】本題主要考查了切線的判定、全等三角形的判定與性質(zhì)以及相似三角形的判定與性質(zhì),注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用是解答此題的關(guān)鍵.3、ABC【解析】【分析】在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.【詳解】解:、時,,故錯誤,符合題意;、,故錯誤,符合題意;、,胡錯誤,符合題意;、,故正確,不符合題意;故選:ABC.【考點】本題考查銳角三角函數(shù)的定義及運用,解題的關(guān)鍵是掌握在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.4、ABC【解析】【分析】根據(jù)相似三角形的判定定理逐項判斷即可.【詳解】解:A、∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,故選項A符合題意;B、∵∠APC=∠ACB,∠A=∠A,∴△APC∽△ACB,故選項B符合題意;C、∵AC2=AP·AB,∠A=∠A,∴△APC∽△ACB,故選項C符合題意;D、AB·CP=AP·CB不是兩個對應(yīng)邊成比例,不能證明△APC和△ACB相似,故選項D不符合條件,故選:ABC.【考點】本題考查相似三角形的判定,熟練掌握相似三角形的判定方法是解答的關(guān)鍵.5、ABC【解析】【分析】根據(jù)垂徑定理知,垂直于弦的直徑平分弦,并且平分線所對的兩條弧,即可判斷A選項、B選項正確,由圓周角定理知,在同圓或等圓中,同弧所對的圓周角相等,可判斷C選項正確,題目中并沒有提到E是OB中點,所以不能證明OE=BE.【詳解】A.AB為⊙O直徑,弦CD⊥AB于E,由垂徑定理得:CE=DE,A選項正確;B.由垂徑定理得:,B選項正確;C.,由圓周角定理得:∠BAC=∠BAD,C選項正確;D.E不一定是OB中點,所以不能證明OE=BE,D錯誤.故選:ABC.【考點】本題考查垂徑定理和圓周角定理,熟知垂直于弦的直徑平分弦,并且平分線所對的兩條弧是解題的關(guān)鍵.6、AB【解析】【分析】連接OD,可證明△ODE是等邊三角形,所以A,B正確;通過舉反例:當(dāng)重合,時,可得:<可得C不一定成立,根據(jù)切線的定義,可得D不正確,從而可得答案.【詳解】解:連接OD,∵∠A=60°∴∠B+∠C=120°,的度數(shù)為∵的度數(shù)為∴的度數(shù)為∴∠DOE=60°,又OD=OE,∴△ODE是等邊三角形,即所以A正確,符合題意;則D到OE的長度是等邊△ODE的高,而等邊的邊長等于圓的半徑,則高一定是一個定值,因而B正確,符合題意;如圖:當(dāng)重合,時,則為的切線,同理可得:此時則為的直徑,>此時<所以C不符合題意;與的外接圓有兩個交點,不是外接圓的切線,所以D不符合題意;故選:AB.【考點】本題考查的是圓的基本性質(zhì),圓弧的度數(shù)與其所對的圓周角的度數(shù)之間的關(guān)系,切線的概念的理解,等邊三角形的判定與性質(zhì),靈活運用以上知識解題是解題的關(guān)鍵.7、ACD【解析】【分析】可以選擇特殊值代入,進行分析.【詳解】解:A中,如α=30°,β=60°時,而sin(α+β)=sin90°=1,sin30°+sin60°=,顯然錯誤,符合題意;B中,根據(jù)cos60°=,正確,不符合題意;C中,如α=60°,β=30°時,而cos60°=,cos30°=,顯然錯誤,符合題意;D中,如cos30°>sin45°,錯誤,符合題意.故選:ACD.【考點】本題考查了特殊角的三角函數(shù)值,記憶特殊角的三角函數(shù)值是解題的關(guān)鍵.三、填空題1、64【解析】【分析】先根據(jù)圓周角定理求出∠O的度數(shù),然后根據(jù)平行四邊形的對角相等求解即可.【詳解】∵,∴∠O=2,∵四邊形是平行四邊形,∴∠O=.故答案為:64.【考點】本題考查了圓周角定理,平行四變形的性質(zhì),熟練掌握圓周角定理是解答本題的關(guān)鍵.在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.2、120【解析】【分析】本題可通過構(gòu)造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結(jié)合同弧所對的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因為等邊三角形ABC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因為OA=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點】本題考查圓與等邊三角形的綜合,本題目需要根據(jù)等角的互換將所求問題進行轉(zhuǎn)化,構(gòu)造輔助線是本題難點,全等以及垂徑定理的應(yīng)用在圓綜合題目極為常見,圓心角、弧、圓周角的關(guān)系需熟練掌握.3、【解析】【分析】連結(jié)OG,如圖,根據(jù)勾股定理得到BC=4,根據(jù)平移的性質(zhì)得到CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,根據(jù)切線的性質(zhì)得到OD⊥A1B1,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】連結(jié)OG,如圖,∵∠BAC=90°,AB=5,AC=3,∴BC==4,∵Rt△ABC沿射線CB方向平移,當(dāng)A1B1與半圓O相切于點D,得△A1B1C1,∴CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,∵A1B1與半圓O相切于點D,∴OD⊥A1B1,∵BC=4,線段BC為半圓O的直徑,∴OB=OC=2,∵∠GEO=∠DEF,∴Rt△B1OD∽Rt△B1A1C1,∴,即,解得OB1=,∴BB1=OB1﹣OB=﹣2=,故答案為.【考點】本題考查了切線的性質(zhì),平移的性質(zhì)、勾股定理和相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)是解題的關(guān)鍵.4、﹣1≤x≤2【解析】【分析】根據(jù)圖象可以直接回答,使得y1≥y2的自變量x的取值范圍就是直線y1=kx+m落在二次函數(shù)y2=ax2+bx+c的圖象上方的部分對應(yīng)的自變量x的取值范圍.【詳解】根據(jù)圖象可得出:當(dāng)y1≥y2時,x的取值范圍是:﹣1≤x≤2.故答案為:﹣1≤x≤2.【考點】本題考查了二次函數(shù)的性質(zhì).本題采用了“數(shù)形結(jié)合”的數(shù)學(xué)思想,使問題變得更形象、直觀,降低了題的難度.5、5【解析】【分析】先證明△ACD∽△BCA,再根據(jù)相似三角形的性質(zhì)得到:△ACD的面積:△ABC的面積為1:4,再結(jié)合△ABD的面積為15,然后求出△ACD的面積即可.【詳解】∵,,∴,∵,,∴,∴的面積,故答案是:5.【考點】本題主要考查了相似三角形的判定和性質(zhì)、掌握相似三角形的面積比等于相似比的平方是解答本題的關(guān)鍵.6、-2或【解析】【分析】根據(jù)二次函數(shù)一般式的頂點坐標(biāo)公式表示出頂點,再根據(jù)頂點在x軸上,建立等量關(guān)系求解即可.【詳解】解:的頂點坐標(biāo)為:∵頂點在x軸上∴解得:故答案為:或【考點】本題考查二次函數(shù)一般式的頂點坐標(biāo),掌握二次函數(shù)一般式的頂點坐標(biāo)公式是解題關(guān)鍵.7、3【解析】【分析】根據(jù)反比例函數(shù)的幾何意義,可得,從而得到,再將點P(a,4)代入解析式,即可求解.【詳解】解:∵點A是反比例函數(shù)y=(x>0)圖象上的一點,AB垂直于x軸,∴,∵△OAB的面積為6.∴,即,∴反比例函數(shù)的解析式為,∵點P(a,4)也在此函數(shù)的圖象上,∴,解得:.故答案為:3【考點】本題主要考查了反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質(zhì),熟練掌握反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質(zhì),利用數(shù)形結(jié)合思想解答是解題的關(guān)鍵.四、解答題1、(1)圖3中CD′的長度比圖2中CD的長度收縮了米;(2)該遮陽篷落在窗戶AB上的陰影長度為米.【解析】【分析】(1)解直角△ACD,求出CD,再解直角△BCD′,求出CD′,然后計算CD﹣CD′的長度即可;(2)圖3中遮陽蓬的長度為圖2中CD的長度時,過D作DE∥BD′,交AB于E,解直角△ECD,求出CE,再計算CE-BC即可.【詳解】(1)在直角△ACD中,∵AC=AB+BC=2米,∠CAD=30°,∴tan∠CAD=,∴CD=AC?tan∠CAD=2×=(米).在直角△BCD′中,∵BC=0.5米,∠CBD′=60°,∴tan∠CBD′=,∴CD′=BC?tan∠CBD′=0.5×=(米),∴CD﹣CD′=﹣=(米).故圖3中CD′的長度比圖2中CD的長度收縮了米;(2)如圖,圖3中遮陽篷的長度為圖2中CD的長度時,過D作DE∥BD′,交AB于E.在直角△ECD中,∵CD=米,∠CED=60°,∴tan∠CED=,∴CE===,∴BE=CE﹣BC=﹣0.5=(米).故該遮陽篷落在窗戶AB上的陰影長度為米.【考點】本題考查了解直角三角形的實際應(yīng)用,掌握解直角三角形的方法是解題的關(guān)鍵.2、(1);(2)2.【解析】【分析】(1)先去絕對值,零指數(shù)冪,負指數(shù)冪,二次根式化簡,再合并同類項即可;(2)先計算負指數(shù)冪,代入特殊角三角函數(shù)值,二次根式化簡,再計算乘法,合并同類項即可.【詳解】解:(1),=,=;(2)=,=,=2.【考點】本題考查特殊角三角函數(shù)值,二次根式,負指數(shù)冪,零指數(shù)冪,絕對值的混合運算,掌握運算法則是解題關(guān)鍵.3、(1);(2);(3)存在.【解析】【分析】(1)由,且AB=6即可求出AO的長,再由勾股定理即可求出BO的長,即可求出A和B點坐標(biāo).(2)P點從原點出發(fā),在到達終點前,直線l掃過的面積始終為平行四邊形BMNE,故求該平行四邊的底BE和高OP,相乘即得到面積S;由,且AB=6,可求出AC=10,過D點作DF⊥x軸,易證,求出CF=AO,進而求出OF的長;由,故,求出OE的長,進而求出OB+OE=BE.(3)分類討論,當(dāng)B為直角頂角時,過Q1點作QH⊥y軸,此時△Q1HB≌△BOC,即可求出Q1的坐標(biāo);當(dāng)Q2為直角頂角時,過Q2點作QM⊥y軸,QN⊥x軸,此時Q2MB≌Q2NC,即可求出Q2的坐標(biāo).【詳解】解:(1)由題意可得故答案為:(2)過點作軸,垂足為F,則
∴∵∴,故,求得.當(dāng)時,直線掃過的圖形是平行四邊形,故答案為:.存在,.如下圖所示:情況一:當(dāng)B為直角頂角時,此時BQ1=BC,過Q1點作Q1H1⊥y軸于H1,∴∠Q1H1B=∠BOC=90°,且BQ1=BC,∵∠Q1BC=90°∴∠H1BQ1+∠OBC=90°又∠BCO+∠OBC=90°∴∠H1BO1=∠BCO在△Q1H1B和△BOC中:,∴△△Q1H1B≌△BOC(AAS)∴Q1H1=BO=,BH1=OC=,∴OH1=∴情況二:當(dāng)Q2為直角頂角時,此時有Q2B=Q2C,過Q2點分別作Q2M⊥y軸,Q2N⊥x軸∴∠MQ2B+∠BQ2N=90°又∴∠NQ2C+∠BQ2N=90°∴∠MQ2B=∠NQ2C在△MQ2B和△NQ2C中,∴△MQ2B≌△NQ2C(AAS)∴MQ2=NQ2=OM=ON,且∠MON=90°∴四邊形Q2MON為正方形,設(shè)MB=NC=a則OC-a=ON=OB=,且OC=∴求得a=,∴ON=OM=OB+a=∴故答案為:和【考點】本題考查了三角函數(shù)求值、平行四邊形的面積公式、三角形全等、等腰直角三角形等相關(guān)知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新材料作文(解析版)-2025年新高一語文暑假預(yù)習(xí)課(統(tǒng)編版)
- 重慶市某中學(xué)2024-2025學(xué)年八年級下學(xué)期期中物理試卷
- 2025年光伏電站施工安全協(xié)議
- 2025年保安員上崗證初級保安員模擬考試必考題庫(附答案)
- 2025年安徽省巢湖市特種設(shè)備作業(yè)煙花爆竹從業(yè)人員預(yù)測試題含答案
- 國際家電產(chǎn)品認證體系認證流程標(biāo)準(zhǔn)化研究考核試卷
- 園林植物配置與園林景觀生態(tài)效益評估方法研究考核試卷
- 內(nèi)陸水域養(yǎng)殖產(chǎn)業(yè)綠色發(fā)展策略研究考核試卷
- 中藥供應(yīng)鏈追溯技術(shù)升級考核試卷
- 化工設(shè)備泄漏檢測算法研究考核試卷
- 健康宣教-癌癥-課件
- 生理學(xué)全套課件
- 實驗室生物安全會議記錄
- 孕產(chǎn)婦死亡情況分析報告
- 矽肺學(xué)習(xí)課件
- JCT908-2013 人造石的標(biāo)準(zhǔn)
- 賽事承辦服務(wù)投標(biāo)方案(技術(shù)方案)
- SR4和SR4B發(fā)電機和控制面板操作和保養(yǎng)手冊
- 全國各氣象臺站區(qū)站號及經(jīng)緯度
- 公務(wù)員錄用體檢操作手冊
- 深圳市勞動法律法規(guī)參考手冊
評論
0/150
提交評論