




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
備戰(zhàn)中考數(shù)學(xué)平行四邊形培優(yōu)易錯難題練習(xí)(含答案)含答案解析一、平行四邊形1.如果兩個三角形的兩條邊對應(yīng)相等,夾角互補,那么這兩個三角形叫做互補三角形,如圖2,分別以△ABC的邊AB、AC為邊向外作正方形ABDE和ACGF,則圖中的兩個三角形就是互補三角形.(1)用尺規(guī)將圖1中的△ABC分割成兩個互補三角形;(2)證明圖2中的△ABC分割成兩個互補三角形;(3)如圖3,在圖2的基礎(chǔ)上再以BC為邊向外作正方形BCHI.①已知三個正方形面積分別是17、13、10,在如圖4的網(wǎng)格中(網(wǎng)格中每個小正方形的邊長為1)畫出邊長為、、的三角形,并計算圖3中六邊形DEFGHI的面積.②若△ABC的面積為2,求以EF、DI、HG的長為邊的三角形面積.【答案】(1)作圖見解析(2)證明見解析(3)①62;②6【解析】試題分析:(1)作BC邊上的中線AD即可.(2)根據(jù)互補三角形的定義證明即可.(3)①畫出圖形后,利用割補法求面積即可.②平移△CHG到AMF,連接EM,IM,則AM=CH=BI,只要證明S△EFM=3S△ABC即可.試題解析:(1)如圖1中,作BC邊上的中線AD,△ABD和△ADC是互補三角形.(2)如圖2中,延長FA到點H,使得AH=AF,連接EH.∵四邊形ABDE,四邊形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是兩個互補三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①邊長為、、的三角形如圖4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六邊形=17+13+10+4×5.5=62.②如圖3中,平移△CHG到AMF,連接EM,IM,則AM=CH=BI,設(shè)∠ABC=x,∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90°+90°﹣x=180°﹣x,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,∴△DBI和△ABC是互補三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考點:1、作圖﹣應(yīng)用與設(shè)計,2、三角形面積2.如圖,四邊形ABCD中,AD∥BC,∠A=90°,BD=BC,點E為CD的中點,射線BE交AD的延長線于點F,連接CF.(1)求證:四邊形BCFD是菱形;(2)若AD=1,BC=2,求BF的長.【答案】(1)證明見解析(2)2【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵點E為CD的中點,∴DE=EC,在△BCE與△FDE中,,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四邊形BCDF為平行四邊形,∵BD=BC,∴四邊形BCFD是菱形;(2)∵四邊形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF==2.3.如圖,四邊形ABCD中,∠BCD=∠D=90°,E是邊AB的中點.已知AD=1,AB=2.(1)設(shè)BC=x,CD=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(2)當(dāng)∠B=70°時,求∠AEC的度數(shù);(3)當(dāng)△ACE為直角三角形時,求邊BC的長.【答案】(1);(2)∠AEC=105°;(3)邊BC的長為2或.【解析】試題分析:(1)過A作AH⊥BC于H,得到四邊形ADCH為矩形.在△BAH中,由勾股定理即可得出結(jié)論.(2)取CD中點T,連接TE,則TE是梯形中位線,得ET∥AD,ET⊥CD,∠AET=∠B=70°.又AD=AE=1,得到∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,即可得到結(jié)論.(3)分兩種情況討論:①當(dāng)∠AEC=90°時,易知△CBE≌△CAE≌△CAD,得∠BCE=30°,解△ABH即可得到結(jié)論.②當(dāng)∠CAE=90°時,易知△CDA∽△BCA,由相似三角形對應(yīng)邊成比例即可得到結(jié)論.試題解析:解:(1)過A作AH⊥BC于H.由∠D=∠BCD=90°,得四邊形ADCH為矩形.在△BAH中,AB=2,∠BHA=90°,AH=y,HB=,∴,則(2)取CD中點T,聯(lián)結(jié)TE,則TE是梯形中位線,得ET∥AD,ET⊥CD,∴∠AET=∠B=70°.又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,∴∠AEC=70°+35°=105°.(3)分兩種情況討論:①當(dāng)∠AEC=90°時,易知△CBE≌△CAE≌△CAD,得∠BCE=30°,則在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2.②當(dāng)∠CAE=90°時,易知△CDA∽△BCA,又,則(舍負(fù))易知∠ACE<90°,所以邊BC的長為.綜上所述:邊BC的長為2或.點睛:本題是四邊形綜合題.考查了梯形中位線,相似三角形的判定與性質(zhì).解題的關(guān)鍵是掌握梯形中常見的輔助線作法.4.已知AD是△ABC的中線P是線段AD上的一點(不與點A、D重合),連接PB、PC,E、F、G、H分別是AB、AC、PB、PC的中點,AD與EF交于點M;(1)如圖1,當(dāng)AB=AC時,求證:四邊形EGHF是矩形;(2)如圖2,當(dāng)點P與點M重合時,在不添加任何輔助線的條件下,寫出所有與△BPE面積相等的三角形(不包括△BPE本身).【答案】(1)見解析;(2)△APE、△APF、△CPF、△PGH.【解析】【分析】(1)由三角形中位線定理得出EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,推出EF∥GH,EF=GH,證得四邊形EGHF是平行四邊形,證得EF⊥AP,推出EF⊥EG,即可得出結(jié)論;(2)由△APE與△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE與△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF與△CPF的底AF=CF,又等高,得出S△APF=S△CPF,證得△PGH底邊GH上的高等于△AEF底邊EF上高的一半,推出S△PGH=S△AEF=S△APF,即可得出結(jié)果.【詳解】(1)證明:∵E、F、G、H分別是AB、AC、PB、PC的中點,∴EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,∴EF∥GH,EF=GH,∴四邊形EGHF是平行四邊形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四邊形EGHF是矩形;(2)∵PE是△APB的中線,∴△APE與△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中線,∴△APE與△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中線,∴△APF與△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分別是AB、AC、PB、PC的中點,∴△AEF底邊EF上的高等于△ABC底邊BC上高的一半,△PGH底邊GH上的高等于△PBC底邊BC上高的一半,∴△PGH底邊GH上的高等于△AEF底邊EF上高的一半,∵GH=EF,∴S△PGH=S△AEF=S△APF,綜上所述,與△BPE面積相等的三角形為:△APE、△APF、△CPF、△PGH.【點睛】本題考查了矩形的判定與性質(zhì)、平行四邊形的判定、三角形中位線定理、平行線的性質(zhì)、三角形面積的計算等知識,熟練掌握三角形中位線定理是解決問題的關(guān)鍵.5.如圖,在正方形ABCD中,E是邊AB上的一動點,點F在邊BC的延長線上,且,連接DE,DF,EF.FH平分交BD于點H.(1)求證:;(2)求證::(3)過點H作于點M,用等式表示線段AB,HM與EF之間的數(shù)量關(guān)系,并證明.【答案】(1)詳見解析;(2)詳見解析;(3),證明詳見解析.【解析】【分析】(1)根據(jù)正方形性質(zhì),得到.(2)由,得.由,平分,得.因為平分,所以.由于,,所以.(3)過點作于點,由正方形性質(zhì),得.由平分,得.因為,所以.由,得.【詳解】(1)證明:∵四邊形是正方形,∴,.∴.∵?!?∴.∴.∴.(2)證明:∵,∴.∵,∴.∵,平分,∴.∵平分,∴.∵,,∴.∴.(3).證明:過點作于點,如圖,∵正方形中,,,∴.∵平分,∴.∵,∴.∴.∵,∴.【點睛】本題考查正方形的性質(zhì)、勾股定理、角平分線的性質(zhì)、三角函數(shù),題目難度較大,解題的關(guān)鍵是熟練掌握正方形的性質(zhì)、勾股定理、角平分線的性質(zhì)、三角函數(shù).6.正方形ABCD,點E在邊BC上,點F在對角線AC上,連AE.(1)如圖1,連EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周長;(2)如圖2,若AF=AB,過點F作FG⊥AC交CD于G,點H在線段FG上(不與端點重合),連AH.若∠EAH=45°,求證:EC=HG+FC.【答案】(1);(2)證明見解析【解析】【分析】(1)由正方形性質(zhì)得出AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,得出AC=AB=4,求出AF=3,CF=AC﹣AF=,求出△CEF是等腰直角三角形,得出EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周長;(2)延長GF交BC于M,連接AG,則△CGM和△CFG是等腰直角三角形,得出CM=CG,CG=CF,證出BM=DG,證明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再證明△ABE≌△AFH,得出BE=FH,即可得出結(jié)論.【詳解】(1)∵四邊形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,∴AC=AB=4,∵4AF=3AC=12,∴AF=3,∴CF=AC﹣AF=,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理得:AE=,∴△AEF的周長=AE+EF+AF=;(2)證明:延長GF交BC于M,連接AG,如圖2所示:則△CGM和△CFG是等腰直角三角形,∴CM=CG,CG=CF,∴BM=DG,∵AF=AB,∴AF=AD,在Rt△AFG和Rt△ADG中,,∴Rt△AFG≌Rt△ADG(HL),∴FG=DG,∴BM=FG,∵∠BAC=∠EAH=45°,∴∠BAE=∠FAH,∵FG⊥AC,∴∠AFH=90°,在△ABE和△AFH中,,∴△ABE≌△AFH(ASA),∴BE=FH,∵BM=BE+EM,F(xiàn)G=FH+HG,∴EM=HG,∵EC=EM+CM,CM=CG=CF,∴EC=HG+FC.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理等知識;熟練掌握等腰直角三角形的判定與性質(zhì),證明三角形全等是解題的關(guān)鍵.7.(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)【答案】見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD-∠ECD=∠ECG-∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴BE=DG.應(yīng)用:∵四邊形ABCD為菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=3ED,∴S△CDE=,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.8.如圖,點O是正方形ABCD兩條對角線的交點,分別延長CO到點G,OC到點E,使OG=2OD、OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG.(1)如圖1,若正方形OEFG的對角線交點為M,求證:四邊形CDME是平行四邊形.(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn),得到正方形OE′F′G′,如圖2,連接AG′,DE′,求證:AG′=DE′,AG′⊥DE′;(3)在(2)的條件下,正方形OE′F′G′的邊OG′與正方形ABCD的邊相交于點N,如圖3,設(shè)旋轉(zhuǎn)角為α(0°<α<180°),若△AON是等腰三角形,請直接寫出α的值.【答案】(1)證明見解析;(2)證明見解析;(3)α的值是22.5°或45°或112.5°或135°或157.5°.【解析】【分析】(1)由四邊形OEFG是正方形,得到ME=GE,根據(jù)三角形的中位線的性質(zhì)得到CD∥GE,CD=GE,求得CD=GE,即可得到結(jié)論;(2)如圖2,延長E′D交AG′于H,由四邊形ABCD是正方形,得到AO=OD,∠AOD=∠COD=90°,由四邊形OEFG是正方形,得到OG′=OE′,∠E′OG′=90°,由旋轉(zhuǎn)的性質(zhì)得到∠G′OD=∠E′OC,求得∠AOG′=∠COE′,根據(jù)全等三角形的性質(zhì)得到AG′=DE′,∠AG′O=∠DE′O,即可得到結(jié)論;(3)分類討論,根據(jù)三角形的外角的性質(zhì)和等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)證明:∵四邊形OEFG是正方形,∴ME=GE,∵OG=2OD、OE=2OC,∴CD∥GE,CD=GE,∴CD=GE,∴四邊形CDME是平行四邊形;(2)證明:如圖2,延長E′D交AG′于H,∵四邊形ABCD是正方形,∴AO=OD,∠AOD=∠COD=90°,∵四邊形OEFG是正方形,∴OG′=OE′,∠E′OG′=90°,∵將正方形OEFG繞點O逆時針旋轉(zhuǎn),得到正方形OE′F′G′,∴∠G′OD=∠E′OC,∴∠AOG′=∠COE′,在△AG′O與△ODE′中,,∴△AG′O≌△ODE′∴AG′=DE′,∠AG′O=∠DE′O,∵∠1=∠2,∴∠G′HD=∠G′OE′=90°,∴AG′⊥DE′;(3)①正方形OE′F′G′的邊OG′與正方形ABCD的邊AD相交于點N,如圖3,Ⅰ、當(dāng)AN=AO時,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO-∠ADO=22.5°;Ⅱ、當(dāng)AN=ON時,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°-45°=45°;②正方形OE′F′G′的邊OG′與正方形ABCD的邊AB相交于點N,如圖4,Ⅰ、當(dāng)AN=AO時,∵∠OAN=45°,∴∠ANO=∠AON=67.5°,∵∠ADO=45°,∴α=∠ANO+90°=112.5°;Ⅱ、當(dāng)AN=ON時,∴∠NAO=∠AON=45°,∴∠ANO=90°,∴α=90°+45°=135°,Ⅲ、當(dāng)AN=AO時,旋轉(zhuǎn)角a=∠ANO+90°=67.5+90=157.5°,綜上所述:若△AON是等腰三角形時,α的值是22.5°或45°或112.5°或135°或157.5°.【點睛】本題主要考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、銳角三角函數(shù)、旋轉(zhuǎn)變換的性質(zhì)的綜合運用,有一定的綜合性,分類討論當(dāng)△AON是等腰三角形時,求α的度數(shù)是本題的難點.9.如圖①,在矩形中,點從邊的中點出發(fā),沿著速運動,速度為每秒2個單位長度,到達點后停止運動,點是上的點,,設(shè)的面積為,點運動的時間為秒,與的函數(shù)關(guān)系如圖②所示.(1)圖①中=,=,圖②中=.(2)當(dāng)=1秒時,試判斷以為直徑的圓是否與邊相切?請說明理由:(3)點在運動過程中,將矩形沿所在直線折疊,則為何值時,折疊后頂點的對應(yīng)點落在矩形的一邊上.【答案】(1)8,18,20;(2)不相切,證明見解析;(3)t=、5、.【解析】【分析】(1)由題意得出AB=2BE,t=2時,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11時,2t=22,得出BC=18,當(dāng)t=0時,點P在E處,m=△AEQ的面積=AQ×AE=20即可;(2)當(dāng)t=1時,PE=2,得出AP=AE+PE=6,由勾股定理求出PQ=2,設(shè)以PQ為直徑的圓的圓心為O',作O'N⊥BC于N,延長NO'交AD于M,則MN=AB=8,O'M∥AB,MN=AB=8,由三角形中位線定理得出O'M=AP=3,求出O'N=MN-O'M=5<圓O'的半徑,即可得出結(jié)論;(3)分三種情況:①當(dāng)點P在AB邊上,A'落在BC邊上時,作QF⊥BC于F,則QF=AB=8,BF=AQ=10,由折疊的性質(zhì)得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出A'F==6,得出A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得出方程,解方程即可;②當(dāng)點P在BC邊上,A'落在BC邊上時,由折疊的性質(zhì)得:A'P=AP,證出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;③當(dāng)點P在BC邊上,A'落在CD邊上時,由折疊的性質(zhì)得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可.【詳解】(1)∵點P從AB邊的中點E出發(fā),速度為每秒2個單位長度,∴AB=2BE,由圖象得:t=2時,BE=2×2=4,∴AB=2BE=8,AE=BE=4,t=11時,2t=22,∴BC=22-4=18,當(dāng)t=0時,點P在E處,m=△AEQ的面積=AQ×AE=×10×4=20;故答案為8,18,20;(2)當(dāng)t=1秒時,以PQ為直徑的圓不與BC邊相切,理由如下:當(dāng)t=1時,PE=2,∴AP=AE+PE=4+2=6,∵四邊形ABCD是矩形,∴∠A=90°,∴PQ=,設(shè)以PQ為直徑的圓的圓心為O',作O'N⊥BC于N,延長NO'交AD于M,如圖1所示:則MN=AB=8,O'M∥AB,MN=AB=8,∵O'為PQ的中點,∴O''M是△APQ的中位線,∴O'M=AP=3,∴O'N=MN-O'M=5<,∴以PQ為直徑的圓不與BC邊相切;(3)分三種情況:①當(dāng)點P在AB邊上,A'落在BC邊上時,作QF⊥BC于F,如圖2所示:則QF=AB=8,BF=AQ=10,∵四邊形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,由折疊的性質(zhì)得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,∴A'F==6,∴A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得:42+(4-2t)2=(4+2t)2,解得:t=;②當(dāng)點P在BC邊上,A'落在BC邊上時,連接AA',如圖3所示:由折疊的性質(zhì)得:A'P=AP,∴∠APQ'=∠A'PQ,∵AD∥BC,∴∠AQP=∠A'PQ,∴∠APQ=∠AQP,∴AP=AQ=A'P=10,在Rt△ABP中,由勾股定理得:BP==6,又∵BP=2t-4,∴2t-4=6,解得:t=5;③當(dāng)點P在BC邊上,A'落在CD邊上時,連接AP、A'P,如圖4所示:由折疊的性質(zhì)得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理得:DA'==6,∴A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t,由勾股定理得:AP2=82+(2t-4)2,A'P2=22+(22-2t)2,∴82+(2t-4)2=22+(22-2t)2,解得:t=;綜上所述,t為或5或時,折疊后頂點A的對應(yīng)點A′落在矩形的一邊上.【點睛】四邊形綜合題目,考查了矩形的性質(zhì)、折疊變換的性質(zhì)、勾股定理、函數(shù)圖象、直線與圓的位置關(guān)系、三角形中位線定理、等腰三角形的判定、以及分類討論等知識.10.如圖,已知矩形ABCD中,E是AD上一點,F(xiàn)是AB上的一點,EF⊥EC,且EF=EC.(1)求證:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周長為32cm,求AE的長.【答案】(1)證明見解析;(2)6cm.【解析】分析:(1)根據(jù)EF⊥CE,求證∠AEF=∠ECD.再利用AAS即可求證△AEF≌△DCE.(2)利用全等三角形的性質(zhì),對應(yīng)邊相等,再根據(jù)矩形ABCD的周長為32cm,即可求得AE的長.詳解:(1)證明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周長為32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的長為6cm.點睛:此題主要考查學(xué)生對全等三角形的判定與性質(zhì)和矩形的性質(zhì)等知識點的理解和掌握,難易程度適中,是一道很典型的題目.11.問題情境在四邊形ABCD中,BA=BC,DC⊥AC,過點D作DE∥AB交BC的延長線于點E,M是邊AD的中點,連接MB,ME.特例探究(1)如圖1,當(dāng)∠ABC=90°時,寫出線段MB與ME的數(shù)量關(guān)系,位置關(guān)系;(2)如圖2,當(dāng)∠ABC=120°時,試探究線段MB與ME的數(shù)量關(guān)系,并證明你的結(jié)論;拓展延伸(3)如圖3,當(dāng)∠ABC=α?xí)r,請直接用含α的式子表示線段MB與ME之間的數(shù)量關(guān)系.【答案】(1)MB=ME,MB⊥ME;(2)ME=MB.證明見解析;(3)ME=MB·tan.【解析】【分析】(1)如圖1中,連接CM.只要證明△MBE是等腰直角三角形即可;(2)結(jié)論:EM=MB.只要證明△EBM是直角三角形,且∠MEB=30°即可;(3)結(jié)論:EM=BM?tan.證明方法類似;【詳解】(1)如圖1中,連接CM.∵∠ACD=90°,AM=MD,∴MC=MA=MD,∵BA=BC,∴BM垂直平分AC,∵∠ABC=90°,BA=BC,∴∠MBE=∠ABC=45°,∠ACB=∠DCE=45°,∵AB∥DE,∴∠ABE+∠DEC=180°,∴∠DEC=90°,∴∠DCE=∠CDE=45°,∴EC=ED,∵MC=MD,∴EM垂直平分線段CD,EM平分∠DEC,∴∠MEC=45°,∴△BME是等腰直角三角形,∴BM=ME,BM⊥EM.故答案為BM=ME,BM⊥EM.(2)ME=MB.證明如下:連接CM,如解圖所示.∵DC⊥AC,M是邊AD的中點,∴MC=MA=MD.∵BA=BC,∴BM垂直平分AC.∵∠ABC=120°,BA=BC,∴∠MBE=∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°.∵AB∥DE,∴∠ABE+∠DEC=180°,∴∠DEC=60°,∴∠DCE=∠DEC=60°,∴△CDE是等邊三角形,∴EC=ED.∵MC=MD,∴EM垂直平分CD,EM平分∠DEC,∴∠MEC=∠DEC=30°,∴∠MBE+∠MEB=90°,即∠BME=90°.在Rt△BME中,∵∠MEB=30°,∴ME=MB.(3)如圖3中,結(jié)論:EM=BM?tan.理由:同法可證:BM⊥EM,BM平分∠ABC,所以EM=BM?tan.【點睛】本題考查四邊形綜合題、等腰直角三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)、等腰三角形的性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,靈活運用所學(xué)知識解決問題.12.小明在矩形紙片上畫正三角形,他的做法是:①對折矩形紙片ABCD(AB>BC),使AB與DC重合,得到折痕EF,把紙片展平;②沿折痕BG折疊紙片,使點C落在EF上的點P處,再折出PB、PC,最后用筆畫出△PBC(圖1).(1)求證:圖1中的PBC是正三角形:(2)如圖2,小明在矩形紙片HIJK上又畫了一個正三角形IMN,其中IJ=6cm,且HM=JN.①求證:IH=IJ②請求出NJ的長;(3)小明發(fā)現(xiàn):在矩形紙片中,若一邊長為6cm,當(dāng)另一邊的長度a變化時,在矩形紙片上總能畫出最大的正三角形,但位置會有所不同.請根據(jù)小明的發(fā)現(xiàn),畫出不同情形的示意圖(作圖工具不限,能說明問題即可),并直接寫出對應(yīng)的a的取值范圍.【答案】(1)證明見解析;(2)①證明見解析;②12-6(3)3<a<4,a>4【解析】分析:(1)由折疊的性質(zhì)和垂直平分線的性質(zhì)得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”證Rt△IHM≌Rt△IJN即可得;②IJ上取一點Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,繼而可得∠NQJ=30°,設(shè)NJ=x,則IQ=QN=2x、QJ=x,根據(jù)IJ=IQ+QJ求出x即可得;(3)由等邊三角形的性質(zhì)、直角三角形的性質(zhì)、勾股定理進行計算,畫出圖形即可.(1)證明:∵①對折矩形紙片ABCD(AB>BC),使AB與DC重合,得到折痕EF∴PB=PC∵沿折痕BG折疊紙片,使點C落在EF上的點P處∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)證明:①如圖∵矩形AHIJ∴∠H=∠J=90°∵△MNJ是等邊三角形∴MI=NI在Rt△MHI和Rt△JNI中∴Rt△MHI≌Rt△JNI(HL)∴HI=IJ②在線段IJ上取點Q,使IQ=NQ∵Rt△IHM≌Rt△IJN,∴∠HIM=∠JIN,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN知∠JIN=∠QNI=15°,∴∠NQJ=30°,設(shè)NJ=x,則IQ=QN=2x,QJ=x,∵IJ=6cm,∴2x+x=6,∴x=12-6,即NJ=12-6(cm).(3)分三種情況:①如圖:設(shè)等邊三角形的邊長為b,則0<b≤6,則tan60°=,∴a=,∴0<b≤=;②如圖當(dāng)DF與DC重合時,DF=DE=6,∴a=sin60°×DE==,當(dāng)DE與DA重合時,a=,∴<a<;③如圖∵△DEF是等邊三角形∴∠FDC=30°∴DF=∴a>點睛:本題是四邊形的綜合題目,考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)、旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)、正方形的性質(zhì)、全等三角形的判定與性質(zhì)等知識;本題綜合性強,難度較大.13.如圖1,在長方形紙片ABCD中,AB=mAD,其中m?1,將它沿EF折疊(點E.
F分別在邊AB、CD上),使點B落在AD邊上的點M處,點C落在點N處,MN與CD相交于點P,連接EP.設(shè),其中0<n?1.(1)如圖2,當(dāng)n=1(即M點與D點重合),求證:四邊形BEDF為菱形;(2)如圖3,當(dāng)(M為AD的中點),m的值發(fā)生變化時,求證:EP=AE+DP;(3)如圖1,當(dāng)m=2(即AB=2AD),n的值發(fā)生變化時,的值是否發(fā)生變化?說明理由.【答案】(1)證明見解析;(2)證明見解析;(3)值不變,理由見解析.【解析】試題分析:(1)由條件可知,當(dāng)n=1(即M點與D點重合),m=2時,AB=2AD,設(shè)AD=a,則AB=2a,由矩形的性質(zhì)可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出結(jié)論.(2)延長PM交EA延長線于G,由條件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性質(zhì)就可以得出結(jié)論.(3)如圖1,連接BM交EF于點Q,過點F作FK⊥AB于點K,交BM于點O,通過證明△ABM∽△KFE,就可以得出,即,由AB=2AD=2BC,BK=CF就可以得出的值是為定值.(1)∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90°,∠EDF+∠NDF=90°,∴∠ADE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.∵FN=FC,∴AE=FC.∵AB=CD,∴AB-AE="CD-CF."∴BE="DF."∴BE=DE.Rt△AED中,由勾股定理,得,即,∴AE=AD.∴BE=2AD-AD=.∴.(2)如圖3,延長PM交EA延長線于G,∴∠GAM=90°.∵M為AD的中點,∴AM=DM.∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,AB∥CD.∴∠GAM=∠PDM.在△GAM和△PDM中,∠GAM=∠PDM,AM=DM,∠AMG=∠DMP,∴△GAM≌△PDM(ASA).∴MG=MP.在△EMP和△EMG中,PM=GM,∠PME=∠GME,ME=ME,∴△EMP≌△EMG(SAS).∴EG=EP.∴AG+AE=EP.∴PD+AE=EP,即EP=AE+DP.(3),值不變,理由如下:如圖1,連接BM交EF于點Q,過點F作FK⊥AB于點K,交BM于點O,∵EM=EB,∠MEF=∠BEF,∴EF⊥MB,即∠FQO=90°.∵四邊形FKBC是矩形,∴KF=BC,F(xiàn)C=KB.∵∠FKB=90°,∴∠KBO+∠KOB=90°.∵∠QOF+∠QFO=90°,∠QOF=∠KOB,∴∠KBO=∠OFQ.∵∠A=∠EKF=90°,∴△ABM∽△KFE.∴即.∵AB=2AD=2BC,BK=CF,∴.∴的值不變.考點:1.折疊問題;2.矩形的性質(zhì);3.全等三角形的判定和性質(zhì);4.勾股定理;5.相似三角形的判定和性質(zhì).14.如圖,P是邊長為1的正方形ABCD對角線BD上一動點(P與B、D不重合),∠APE=90°,且點E在BC邊上,AE交BD于點F.(1)求證:①△PAB≌△PCB;②PE=PC;(2)在點P的運動過程中,的值是否改變?若不變,求出它的值;若改變,請說明理由;(3)設(shè)DP=x,當(dāng)x為何值時,AE∥PC,并判斷此時四邊形PAFC的形狀.【答案】(1)見解析;(2);(3)x=﹣1;四邊形PAFC是菱形.【解析】試題分析:(1)根據(jù)四邊形ABCD是正方形,得出AB=BC,∠ABP=∠CBP°,再根據(jù)PB=PB,即可證出△PAB≌△PCB,②根據(jù)∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB,從而證出PE=PC;(2)根據(jù)PA=PC,PE=PC,得出PA=PE,再根據(jù)∠APE=90°,得出∠PAE=∠PEA=45°,即可求出;(3)先求出∠CPE=∠PEA=45°,從而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,從而證出BP=BC=1,x=﹣1,再根據(jù)AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB得出∠BPA=∠BPC=67.5°,PA=PC,從而證出AF=AP=PC,得出答案.試題解析:(1)①∵四邊形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°.∵PB=PB,∴△PAB≌△PCB(SAS).②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°,又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC.(2)在點P的運動過程中,的值不改變.由△PAB≌△PCB可知,PA=PC.∵PE=PC,∴PA=PE,又∵∠APE=90°,∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=.(3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)=67.5°.在△PBC中,∠BPC=(180°﹣∠CBP﹣∠P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025基金經(jīng)理考試試題及答案
- 2026屆山東省普通高中化學(xué)高二第一學(xué)期期末綜合測試模擬試題含答案
- 豐城社區(qū)考試題庫及答案
- 2026屆吉林省長春市第150中學(xué)化學(xué)高二上期中達標(biāo)檢測試題含解析
- 福建省福州市八縣協(xié)作校2026屆化學(xué)高一第一學(xué)期期末調(diào)研模擬試題含解析
- 旗袍造型考試題庫及答案
- 拜城工地考試題庫及答案
- 2025-2030中國手機緊湊型相機模組行業(yè)未來趨勢與盈利前景預(yù)測報告
- 2025-2030中國慢速出行免充氣輪胎市場競爭優(yōu)勢及未來運行狀況監(jiān)測報告
- 幕墻基礎(chǔ)知識培訓(xùn)課件考題
- 水電站安全生產(chǎn)應(yīng)急預(yù)案
- 2025年采購人員考試題庫及答案
- 造林更新工職業(yè)技能等級評價理論知識考試測試題含答案(F卷)
- 派出所戶籍人口管理課件
- 省政府顧問管理辦法
- 醫(yī)院投訴處理課件
- 2025年華住儲備干部考試題庫
- 防暑降溫安全知識培訓(xùn)
- 美容院店長培訓(xùn)
- 肩袖損傷診斷與治療
- GB/T 45817-2025消費品質(zhì)量分級陶瓷磚
評論
0/150
提交評論