考點(diǎn)解析滬科版9年級下冊期末試題及參考答案詳解【達(dá)標(biāo)題】_第1頁
考點(diǎn)解析滬科版9年級下冊期末試題及參考答案詳解【達(dá)標(biāo)題】_第2頁
考點(diǎn)解析滬科版9年級下冊期末試題及參考答案詳解【達(dá)標(biāo)題】_第3頁
考點(diǎn)解析滬科版9年級下冊期末試題及參考答案詳解【達(dá)標(biāo)題】_第4頁
考點(diǎn)解析滬科版9年級下冊期末試題及參考答案詳解【達(dá)標(biāo)題】_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數(shù)是()A.2個 B.3個 C.4個 D.5個2、如圖,圓形螺帽的內(nèi)接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm3、在一個不透明的口袋中裝有3張完全相同的卡片,卡片上面分別寫有數(shù)字,0,2,從中隨機(jī)抽出兩張不同卡片,則下列判斷正確的是()A.?dāng)?shù)字之和是0的概率為0 B.?dāng)?shù)字之和是正數(shù)的概率為C.卡片上面的數(shù)字之和是負(fù)數(shù)的概率為 D.?dāng)?shù)字之和分別是負(fù)數(shù)、0、正數(shù)的概率相同4、擲一枚質(zhì)地均勻的骰子,向上一面的點(diǎn)數(shù)大于2且小于5的概率是()A. B. C. D.5、若的圓心角所對的弧長是,則此弧所在圓的半徑為()A.1 B.2 C.3 D.46、已知菱形ABCD的對角線交于原點(diǎn)O,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,則點(diǎn)D的坐標(biāo)是()A. B. C. D.7、若a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),則關(guān)于x的方程為一元二次方程的概率是()A.1 B. C. D.8、將等邊三角形繞其中心旋轉(zhuǎn)n時與原圖案完全重合,那么n的最小值是()A.60 B.90 C.120 D.180第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖AB為⊙O的直徑,點(diǎn)P為AB延長線上的點(diǎn),過點(diǎn)P作⊙O的切線PE,切點(diǎn)為M,過A、B兩點(diǎn)分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是______(寫所有正確論的號)①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長為;④若AC=3BD,則有tan∠MAP=.2、如圖,PA,PB是的切線,切點(diǎn)分別為A,B.若,,則AB的長為______.3、斛是中國古代的一種量器.據(jù)《漢書.律歷志》記載:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是說:“斛的底面為:正方形外接一個圓,此圓外是一個同心圓”.如圖所示,問題:現(xiàn)有一斛,其底面的外圓直徑為兩尺五寸(即2.5尺),“庣旁”為兩寸五分(即兩同心圓的外圓與內(nèi)圓的半徑之差為0.25尺),則此斛底面的正方形的邊長為________尺.4、如圖,已知,外心為,,,分別以,為腰向形外作等腰直角三角形與,連接,交于點(diǎn),則的最小值是______.5、如圖,在中,,是內(nèi)的一個動點(diǎn),滿足.若,,則長的最小值為_______.6、如圖,正三角形ABC的邊長為,D、E、F分別為BC,CA,AB的中點(diǎn),以A,B,C三點(diǎn)為圓心,長為半徑作圓,圖中陰影部分面積為______.7、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如圖所示,將△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)90°后得到△AB′C′.則圖中陰影部分的面積為_____.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖1,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點(diǎn),過點(diǎn)A作軸,做直線AC平行x軸,點(diǎn)D是二次函數(shù)的圖象與x軸的一個公共點(diǎn)(點(diǎn)D與點(diǎn)O不重合).(1)求點(diǎn)D的橫坐標(biāo)(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時的二次函數(shù)表達(dá)式.(3)在(2)的條件下,如圖2,P為OC的中點(diǎn),在直線AC上取一點(diǎn)M,連接PM,做點(diǎn)C關(guān)于PM的對稱點(diǎn)N,①連接AN,求AN的最小值.②當(dāng)點(diǎn)N落在拋物線的對稱軸上,求直線MN的函數(shù)表達(dá)式.2、如圖1,圖2,圖3的網(wǎng)格均由邊長為1的小正方形組成,圖1是三國時期吳國的數(shù)學(xué)家趙爽所繪制的“弦圖”,它由四個形狀、大小完全相同的直角三角形組成,趙爽利用這個“弦圖”對勾股定理作出了證明,是中國古代數(shù)學(xué)的一項(xiàng)重要成就,請根據(jù)下列要求解答問題.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是對稱圖形(填“軸”或“中心”).(2)請將“弦圖”中的四個直角三角形通過你所學(xué)過的圖形變換,在圖2,3的方格紙中設(shè)計(jì)另外兩個不同的圖案,畫圖要求:①每個直角三角形的頂點(diǎn)均在方格紙的格點(diǎn)上,且四個三角形互不重疊,不必涂陰影;②圖2中所設(shè)計(jì)的圖案(不含方格紙)必須是軸對稱圖形而不是中心對稱圖形;圖3中所設(shè)計(jì)的圖案(不含方格紙)必須既是軸對稱圖形,又是中心對稱圖形.3、在平面內(nèi),給定不在同一直線上的點(diǎn)A,B,C,如圖所示.點(diǎn)O到點(diǎn)A,B,C的距離均等于r(r為常數(shù)),到點(diǎn)O的距離等于r的所有點(diǎn)組成圖形G,ABC的平分線交圖形G于點(diǎn)D,連接AD,CD.求證:AD=CD.4、如圖,正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,求正方形ABCD的邊長和邊心距.5、如圖,已知AB是的直徑,點(diǎn)D為弦BC中點(diǎn),過點(diǎn)C作切線,交OD延長線于點(diǎn)E,連結(jié)BE,OC.(1)求證:.(2)求證:BE是的切線.6、在平面直角坐標(biāo)系中,⊙O的半徑為1,對于直線l和線段AB,給出如下定義:若將線段AB關(guān)于直線l對稱,可以得到⊙O的弦A′B′(A′,B′分別為A,B的對應(yīng)點(diǎn)),則稱線段AB是⊙O的關(guān)于直線l對稱的“關(guān)聯(lián)線段”.例如:在圖1中,線段是⊙O的關(guān)于直線l對稱的“關(guān)聯(lián)線段”.(1)如圖2,的橫、縱坐標(biāo)都是整數(shù).①在線段中,⊙O的關(guān)于直線y=x+2對稱的“關(guān)聯(lián)線段”是_______;②若線段中,存在⊙O的關(guān)于直線y=-x+m對稱的“關(guān)聯(lián)線段”,則=;(2)已知直線交x軸于點(diǎn)C,在△ABC中,AC=3,AB=1,若線段AB是⊙O的關(guān)于直線對稱的“關(guān)聯(lián)線段”,直接寫出b的最大值和最小值,以及相應(yīng)的BC長.7、如圖,四邊形ABCD是正方形.△ABE是等邊三角形,M為對角線BD(不含B,D點(diǎn))上任意一點(diǎn),將線段BM繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到BN,連接EN,AM、CM.請判斷線段AM和線段EN的數(shù)量關(guān)系,并說明理由.-參考答案-一、單選題1、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進(jìn)行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點(diǎn)睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點(diǎn)旋轉(zhuǎn)180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點(diǎn)叫做對稱中心.2、D【分析】根據(jù)圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,過作于設(shè)半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內(nèi)接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點(diǎn)睛】本題考查正多邊形和圓,作邊心距轉(zhuǎn)化為直角三角形的問題是解決問題的關(guān)鍵.3、A【分析】列樹狀圖,得到共有6種等可能的情況,和為正數(shù)的有4種情況,和為負(fù)數(shù)的有2種情況,依次判斷即可.【詳解】解:列樹狀圖如下:共有6種等可能的情況,和為正數(shù)的有4種情況,和為負(fù)數(shù)的有2種情況,A.數(shù)字之和是0的概率為0,故該項(xiàng)符合題意;B.數(shù)字之和是正數(shù)的概率為,故該項(xiàng)不符合題意;C.卡片上面的數(shù)字之和是負(fù)數(shù)的概率為,故該項(xiàng)不符合題意;D.數(shù)字之和分別是負(fù)數(shù)、0、正數(shù)的概率不相同,故該項(xiàng)不符合題意;故選:A.【點(diǎn)睛】此題考查了列樹狀圖求事件的概率,概率的計(jì)算公式,正確列出樹狀圖解答是解題的關(guān)鍵.4、C【分析】根據(jù)骰子各面上的數(shù)字得到向上一面的點(diǎn)數(shù)可能是3或4,利用概率公式計(jì)算即可.【詳解】解:一枚質(zhì)地均勻的骰子共有六個面,點(diǎn)數(shù)分別為1,2,3,4,5,6,∴點(diǎn)數(shù)大于2且小于5的有3或4,∴向上一面的點(diǎn)數(shù)大于2且小于5的概率是=,故選:C.【點(diǎn)睛】此題考查了求簡單事件的概率,正確掌握概率的計(jì)算公式是解題的關(guān)鍵.5、C【分析】先設(shè)半徑為r,再根據(jù)弧長公式建立方程,解出r即可【詳解】設(shè)半徑為r,則周長為2πr,120°所對應(yīng)的弧長為解得r=3故選C【點(diǎn)睛】本題考查弧長計(jì)算,牢記弧長公式是本題關(guān)鍵.6、A【分析】根據(jù)菱形是中心對稱圖形,菱形ABCD的對角線交于原點(diǎn)O,則點(diǎn)與點(diǎn)關(guān)于原點(diǎn)中心對稱,根據(jù)中心對稱的點(diǎn)的坐標(biāo)特征進(jìn)行求解即可【詳解】解:∵菱形是中心對稱圖形,菱形ABCD的對角線交于原點(diǎn)O,∴與點(diǎn)關(guān)于原點(diǎn)中心對稱,點(diǎn)B的坐標(biāo)為,點(diǎn)D的坐標(biāo)是故選A【點(diǎn)睛】本題考查了菱形的性質(zhì),求關(guān)于原點(diǎn)中心對稱的點(diǎn)的坐標(biāo),掌握菱形的性質(zhì)是解題的關(guān)鍵.7、B【分析】根據(jù)一元二次方程的定義,二次項(xiàng)系數(shù)不為0,四個數(shù)中有一個1不能取,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,然后利用概率公式計(jì)算即可.【詳解】解:當(dāng)a=1時于x的方程不是一元二次方程,其它三個數(shù)都是一元二次方程,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,關(guān)于x的方程為一元二次方程的概率是,故選擇B.【點(diǎn)睛】本題考查一元二次方程的定義,列舉法求概率,掌握一元二次方程的定義,列舉法求概率方法是解題關(guān)鍵.8、C【分析】根據(jù)旋轉(zhuǎn)對稱圖形的概念(把一個圖形繞著一個定點(diǎn)旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點(diǎn)叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角),找到旋轉(zhuǎn)角,求出其度數(shù).【詳解】解:等邊三角形繞其中心旋轉(zhuǎn)n時與原圖案完全重合,因而繞其中心旋轉(zhuǎn)的最小度數(shù)是=120°.故選C.【點(diǎn)睛】本題考查了根據(jù)旋轉(zhuǎn)對稱性,掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.二、填空題1、①②④【分析】連接OM,由切線的性質(zhì)可得,繼而得,再根據(jù)平行線的性質(zhì)以及等邊對等角即可求得,由此可判斷①;通過證明,根據(jù)相似三角形的對應(yīng)邊成比例可判斷②;求出,利用弧長公式求得的長可判斷③;由,,,可得,繼而可得,,進(jìn)而有,在中,利用勾股定理求出PD的長,可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長為,故③錯誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設(shè),則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點(diǎn)睛】本題考查了切線的性質(zhì),平行線分線段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,正確添加輔助線,熟練掌握和靈活運(yùn)用相關(guān)知識是解題的關(guān)鍵.2、3【分析】由切線長定理和,可得為等邊三角形,則.【詳解】解:連接,如下圖:,分別為的切線,,為等腰三角形,,,為等邊三角形,,,.故答案為:3.【點(diǎn)睛】本題考查了等邊三角形的判定和切線長定理,解題的關(guān)鍵是作出相應(yīng)輔助線.3、【分析】如圖,根據(jù)四邊形CDEF為正方形,可得∠D=90°,CD=DE,從而得到CE是直徑,∠ECD=45°,然后利用勾股定理,即可求解.【詳解】解:如圖,∵四邊形CDEF為正方形,∴∠D=90°,CD=DE,∴CE是直徑,∠ECD=45°,根據(jù)題意得:AB=2.5,,∴,∴,即此斛底面的正方形的邊長為尺.故答案為:【點(diǎn)睛】本題主要考查了圓內(nèi)接四邊形,勾股定理,熟練掌握圓內(nèi)接四邊形的性質(zhì),勾股定理是解題的關(guān)鍵.4、【分析】由與是等腰直角三角形,得到,,根據(jù)全等三角形的性質(zhì)得到,求得在以為直徑的圓上,由的外心為,,得到,如圖,當(dāng)時,的值最小,解直角三角形即可得到結(jié)論.【詳解】解:與是等腰直角三角形,,,在與中,,≌,,,,在以為直徑的圓上,的外心為,,,如圖,當(dāng)時,的值最小,,,,,.則的最小值是,故答案為:.【點(diǎn)睛】本題考查了三角形的外接圓與外心,全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.5、2【分析】取AC中點(diǎn)O,由勾股定理的逆定理可知∠ADC=90°,則點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點(diǎn)O,∵,即,∴∠ADC=90°,∴點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點(diǎn)睛】本題主要考查了一點(diǎn)到圓上一點(diǎn)的最短距離,勾股定理的逆定理,勾股定理,解題的關(guān)鍵在于確定點(diǎn)D的運(yùn)動軌跡.6、【分析】陰影部分的面積等于等邊三角形的面積減去三個扇形面積,而這三個扇形拼起來正好是一個半徑為半圓的面積,即陰影部分面積=等邊三角形面積?半徑為半圓的面積,因此求出半圓面積,連接AD,則可求得AD的長,從而可求得等邊三角形的面積,即可求得陰影部分的面積.【詳解】連接AD,如圖所示則AD⊥BC∵D點(diǎn)是BC的中點(diǎn)∴由勾股定理得∴∵S半圓=∴S陰影=S△ABC?S半圓故答案為:【點(diǎn)睛】本題是求組合圖形的面積,扇形面積及三角形面積的計(jì)算.關(guān)鍵是把不規(guī)則圖形面積通過割補(bǔ)轉(zhuǎn)化為規(guī)則圖形的面積計(jì)算.7、【分析】利用勾股定理求出AC及AB的長,根據(jù)陰影面積等于求出答案.【詳解】解:由旋轉(zhuǎn)得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴陰影部分的面積==,故答案為:..【點(diǎn)睛】此題考查了求不規(guī)則圖形的面積,正確掌握勾股定理、30度角直角三角形的性質(zhì)、扇形面積計(jì)算公式及分析出陰影面積的構(gòu)成特點(diǎn)是解題的關(guān)鍵.三、解答題1、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設(shè)w=,根據(jù)OD=2b,BD=4-2b,構(gòu)造二次函數(shù)求解即可;(3)①點(diǎn)N在以P為圓心,以2為半徑的圓上運(yùn)動,當(dāng)P、N、A同側(cè)且共線時,AN最小,用勾股定理計(jì)算即可.②分點(diǎn)M在對稱軸的左側(cè)和右側(cè),兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點(diǎn)D的橫坐標(biāo)為2b.(2)設(shè)w=,∵點(diǎn)D的橫坐標(biāo)為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當(dāng)b=1時,w有最大值,最大值為4,此時拋物線的解析式為.(3)①∵點(diǎn)A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點(diǎn),∴OP=PC=2,∵點(diǎn)C關(guān)于PM的對稱點(diǎn)N,∴OP=PC=PN=2,∴點(diǎn)N在以P為圓心,以2為半徑的圓上運(yùn)動,如圖所示,當(dāng)P、N、A同側(cè)且共線時,AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當(dāng)點(diǎn)N落在拋物線的對稱軸上,且M在對稱軸的左側(cè),如圖所示,設(shè)對稱軸與AC交于點(diǎn)H,交x軸于點(diǎn)Q,過點(diǎn)P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,PG=1,∴NG=,∴HN=2-,點(diǎn)N(1,2+),設(shè)CM=a,則MN=a,MH=1-a,∴,解得a=4-2,∴點(diǎn)M(4-2,4),設(shè)直線MN的解析式為y=kx+b,∴,解得,∴直線MN的解析式為y=x+;當(dāng)點(diǎn)N落在拋物線的對稱軸上,且M在對稱軸的右側(cè),如圖所示,設(shè)對稱軸與AC交于點(diǎn)T,交x軸于點(diǎn)R,過點(diǎn)P作PK⊥TN,垂足為K,則KT=KR=2,∵PC=PN=2,PK=1,∴KR=,∴NR=2-,點(diǎn)N(1,2-),TN=2+設(shè)CM=b,則MN=b,MT=a-1,∴,解得b=4+2,∴點(diǎn)M(4+2,4),設(shè)直線MN的解析式為y=mx+q,∴,解得,∴直線MN的解析式為y=x+;綜上所述,直線MN的解析式為y=x+或y=x+.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn),二次函數(shù)的最值,圓的基本性質(zhì),待定系數(shù)法確定一次函數(shù)的解析式,軸對稱的性質(zhì),勾股定理,熟練掌握圓的性質(zhì),拋物線的性質(zhì),靈活運(yùn)用對稱的思想和勾股定理是解題的關(guān)鍵.2、(1)中心(2)見解析【分析】(1)利用中心對稱圖形的意義得到答案即可;(2)①每個直角三角形的頂點(diǎn)均在方格紙的格點(diǎn)上,且四個三角形不重疊,是軸對稱圖形;②所設(shè)計(jì)的圖案(不含方格紙)必須是中心對稱圖形或軸對稱圖形.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是中心對稱圖形,故答案為:中心;(2)如圖2是軸對稱圖形而不是中心對稱圖形;圖3既是軸對稱圖形,又是中心對稱圖形.【點(diǎn)睛】本題考查利用旋轉(zhuǎn)或軸對稱設(shè)計(jì)方案,關(guān)鍵是理解旋轉(zhuǎn)和軸對稱的概念,按要求作圖即可.3、見解析【分析】由題意畫圖,再根據(jù)圓周角定理的推論即可得證結(jié)論.【詳解】證明:根據(jù)題意作圖如下:∵BD是圓周角ABC的角平分線,∴∠ABD=∠CBD,∴,∴AD=CD.【點(diǎn)睛】本題考查了角,弧,弦之間的關(guān)系,熟練掌握三者的關(guān)系定理是解題的關(guān)鍵.4、邊長為,邊心距為【分析】過點(diǎn)O作OE⊥BC,垂足為E,利用圓內(nèi)接四邊形的性質(zhì)求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根據(jù)勾股定理求出OE、BE即可.【詳解】解:過點(diǎn)O作OE⊥BC,垂足為E,∵正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,∴∠BOC==90°,∠OBC=45°,OB=OC=6,∴BE=OE.在Rt△OBE中,∠BEO=90°,由勾股定理可得∵OE2+BE2=OB2,∴OE2+BE2=36,∴OE=BE=,∴BC=2BE=,即半徑為6的圓內(nèi)接正方形ABCD的邊長為,邊心距為.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形的性質(zhì),以及勾股定理,正多邊形各邊所對的外接圓的圓心角都相等,正多邊形每一邊所對的外接圓的圓心角叫做正多邊形的中心角,正n邊形每個中心角都等于.5、(1)見解析(2)見解析【分析】(1)由垂徑定理可得OD⊥BC、CD=DB、∠CDE=∠BDE,然后說明Rt△CDE≌Rt△BDE,最后運(yùn)用全等三角形的性質(zhì)即可證明;(2)由等腰三角形的性質(zhì)可得∠ECB=∠EBC、∠OCB=∠OBC,再根據(jù)CE是切線得到∠OCE=90°,即∠OCB+∠BCE=90°,進(jìn)而說明BE⊥AB即可證明.(1)證明:∵點(diǎn)D為弦BC中點(diǎn)∴OD⊥BC,CD=DB∴∠CDE=∠BDE在Rt△CDE和Rt△BDECD=BD,∠CDE=∠BDE,DE=DE∴Rt△CDE≌Rt△BDE∴EC=EB.(2)證明:∵EC=EB,OC=OB∴∠ECB=∠EBC,∠OCB=∠OBC,∵CE是切線∴∠OCE=90°,即∠OCB+∠BCE=90°∴∠OBC+∠EBC=90°,即BE⊥AB∴BE是的切線.【點(diǎn)睛】本題主要考查了垂徑定理、全等三角形的判定與性質(zhì)、切線的證明、等腰三角形的性質(zhì)等知識點(diǎn),掌握垂徑定理是解答本題的關(guān)鍵.6、(1)①A1B1;②2或3;(2)b的最大值為,此時BC=;b的最小值為,此時BC=【分析】(1)①根據(jù)題意作出圖象即可解答;②根據(jù)“關(guān)聯(lián)線段”的定義,可確定線段A2B2存在“關(guān)聯(lián)線段”,再分情況解答即可;(2)設(shè)與AB對應(yīng)的“關(guān)聯(lián)線段”是A’B’,由題意可知:當(dāng)點(diǎn)A’(1,0)時,b最大,當(dāng)點(diǎn)A’(-1,0)時,b最??;然后分別畫出圖形求解即可;【詳解】解:(1)①作出各點(diǎn)關(guān)于直線y=x+2的對稱點(diǎn),如圖所示,只有A1B1符合題意;故答案為:A1B1;②由于直線A1B1與直線y=-x+m垂直,故A1B1不是⊙O的關(guān)于直線y=-x+m對稱的“關(guān)聯(lián)線段”;由于線段A3B3=,而圓O的最大弦長直徑=2,故A3B3也不是⊙O的關(guān)于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論