




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省鐘祥市中考數(shù)學(xué)真題分類(勾股定理)匯編專題訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)的點(diǎn)F處,連接CF,則CF的長(zhǎng)為()A. B. C. D.2、如圖,在中,,,,為邊上一動(dòng)點(diǎn),于,于,為中點(diǎn),則的最小值為(
).A. B. C. D.3、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底墻到左墻角的距離為1.5m,頂端距離地面2m,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面0.7m,那么小巷的寬度為(
)A.3.2m B.3.5m C.3.9m D.4m4、《九章算術(shù)》中的“折竹抵地”問(wèn)題:今有竹高一丈,末折抵地,去根六尺.問(wèn)折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠(yuǎn),問(wèn)折斷處離地面的高度是多少?設(shè)折斷處離地面的高度為尺,則可列方程為(
)A. B.C. D.5、在自習(xí)課上,小芳同學(xué)將一張長(zhǎng)方形紙片ABCD按如圖所示的方式折疊起來(lái),她發(fā)現(xiàn)D、B兩點(diǎn)均落在了對(duì)角線AC的中點(diǎn)O處,且四邊形AECF是菱形.若AB=3cm,則陰影部分的面積為()A.1cm2 B.2cm2 C.cm2 D.cm26、《九章算術(shù)》被尊為古代數(shù)學(xué)“群經(jīng)之首”,其卷九勾股定理篇記載:今有圓材埋于壁中,不知大?。凿忎徶?,深一寸,鋸道長(zhǎng)一尺.問(wèn)徑幾何?如圖,大意是,今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這個(gè)木材,鋸口深等于1寸,鋸道長(zhǎng)1尺,則圓形木材的直徑是(
)(1尺=10寸)A.12寸 B.13寸 C.24寸 D.26寸7、有一個(gè)直角三角形的兩邊長(zhǎng)分別為3和4,則第三邊的長(zhǎng)為()A.5 B. C. D.5或第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長(zhǎng)為_(kāi)______2、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點(diǎn)C到AB的距離是_______.3、公元三世紀(jì),我國(guó)漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的“趙爽弦圖”,它由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形,如果小正方形面積是49,直角三角形中較小銳角θ的正切為,那么大正方形的面積是_____.4、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個(gè)正方形.若四個(gè)陰影部分面積分別為,,,,則的值為_(kāi)_____,的值為_(kāi)_____.5、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來(lái),蘆葦?shù)捻敹薉恰好到達(dá)水面的C處,且C到BD的距離AC=6米,水的深度(AB)為_(kāi)_______米6、如圖,圓柱形無(wú)蓋玻璃容器,高18cm,底面周長(zhǎng)為60cm,在外側(cè)距下底1cm的點(diǎn)C處有一蜘蛛,與蜘蛛相對(duì)的圓柱形容器的上口外側(cè)距開(kāi)口1cm的F處有一蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路線的長(zhǎng)度為_(kāi)_________cm(容器壁厚度忽略不計(jì)).7、已知一直角三角形的兩條直角邊分別為6cm、8cm,則此直角三角形斜邊上的高為_(kāi)___.8、如圖,某農(nóng)舍的大門是一個(gè)木制的長(zhǎng)方形柵欄,它的高為2m,寬為1.5m,現(xiàn)需要在相對(duì)的頂點(diǎn)間用一塊木板加固,則木板的長(zhǎng)為_(kāi)_______.三、解答題(7小題,每小題10分,共計(jì)70分)1、已知:整式A=(n2﹣1)2+(2n)2,整式B>0.嘗試化簡(jiǎn)整式A.發(fā)現(xiàn)A=B2.求整式B.聯(lián)想:由上可知,B2=(n2﹣1)2+(2n)2,當(dāng)n>1時(shí),n2﹣1,2n,B為直角三角形的三邊長(zhǎng),如圖,填寫(xiě)下表中B的值;直角三角形三邊n2﹣12nB勾股數(shù)組Ⅰ8勾股數(shù)組Ⅱ352、在△ABC中,,AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC以1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)△ABP為直角三角形時(shí),求t的值.3、勾股定理被譽(yù)為“幾何明珠”,在數(shù)學(xué)的發(fā)展歷程中占有舉足輕重的地位.它是初中數(shù)學(xué)中的重要知識(shí)點(diǎn)之一,也是初中學(xué)生以后解決數(shù)學(xué)問(wèn)題和實(shí)際問(wèn)題中常常運(yùn)用到的重要知識(shí),因此學(xué)好勾股定理非常重要.學(xué)習(xí)數(shù)學(xué)“不僅要知其然,更要知其所以然”,所以,我們要學(xué)會(huì)勾股定理的各種證明方法.請(qǐng)你利用如圖圖形證明勾股定理:已知:如圖,四邊形ABCD中,BD⊥CD,AE⊥BD于點(diǎn)E,且△ABE≌△BCD.求證:AB2=BE2+AE2.4、如圖,某港口位于東西方向的海岸線上.“遠(yuǎn)航”號(hào)、“海天”號(hào)輪船同時(shí)離開(kāi)港口,各自沿一固定方向航行,“遠(yuǎn)航”號(hào)每小時(shí)航行16海里,“海天”號(hào)每小時(shí)航行12海里.它們離開(kāi)港口一個(gè)半小時(shí)后分別位于點(diǎn)Q,R處,且相距30海里.如果知道“遠(yuǎn)航”號(hào)沿東北方向航行,能知道“海天”號(hào)沿哪個(gè)方向航行嗎?5、小明爸爸給小明出了一道題:如圖,修公路遇到一座山,于是要修一條隧道.已知A,B,C在同一條直線上,為了在小山的兩側(cè)B,C同時(shí)施工,過(guò)點(diǎn)B作一直線m(在山的旁邊經(jīng)過(guò)),過(guò)點(diǎn)C作一直線l與m相交于D點(diǎn),經(jīng)測(cè)量,,米,米.若施工隊(duì)每天挖100米,求施工隊(duì)幾天能挖完?6、如圖,點(diǎn)是內(nèi)一點(diǎn),把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,且,,.(1)判斷的形狀,并說(shuō)明理由;(2)求的度數(shù).7、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測(cè)距儀,測(cè)得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計(jì)算敵方汽車的速度嗎?-參考答案-一、單選題1、C【解析】【分析】連接BF,(見(jiàn)詳解圖),由翻折變換可知,BF⊥AE,BE=EF,由點(diǎn)E是BC的中點(diǎn),可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進(jìn)而可得到BF的長(zhǎng)度;結(jié)合題意可知FE=BE=EC,進(jìn)而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長(zhǎng)度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為:【考點(diǎn)】此題考查矩形的性質(zhì)和折疊問(wèn)題,解題關(guān)鍵在于利用好折疊的性質(zhì),對(duì)應(yīng)點(diǎn)的連線被折痕垂直平分.2、D【解析】【分析】先根據(jù)矩形的判定得出AEPF是矩形,再根據(jù)矩形的性質(zhì)得出EF,AP互相平分,且EF=AP,再根據(jù)垂線段最短的性質(zhì)就可以得出AP⊥BC時(shí),AP的值最小,即AM的值最小,根據(jù)面積關(guān)系建立等式求出其解即可.【詳解】解:如圖,連接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四邊形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交點(diǎn)就是M點(diǎn).∵當(dāng)AP的值最小時(shí),AM的值就最小,∴當(dāng)AP⊥BC時(shí),AP的值最小,即AM的值最小.∵AP?BC=AB?AC,∴AP?BC=AB?AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故選:D.【考點(diǎn)】本題考查了矩形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,三角形的面積公式的運(yùn)用,垂線段最短的性質(zhì)的運(yùn)用,解題的關(guān)鍵是求出AP的最小值.3、C【解析】【分析】如圖,在Rt△ACB中,先根據(jù)勾股定理求出AB,然后在Rt△A′BD中根據(jù)勾股定理求出BD,進(jìn)而可得答案.【詳解】解:如圖,在Rt△ACB中,∵∠ACB=90°,BC=1.5米,AC=2米,∴AB2=1.52+22=6.25,∴AB=2.5米,在Rt△A′BD中,∵∠A′DB=90°,A′D=0.7米,BD2+A′D2=A′B2,∴BD2+0.72=6.25,∴BD2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故選:C.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,正確理解題意、熟練掌握勾股定理是解題的關(guān)鍵.4、D【解析】【分析】先畫(huà)出三角形,根據(jù)勾股定理和題目設(shè)好的未知數(shù)列出方程.【詳解】解:如圖,根據(jù)題意,,,設(shè)折斷處離地面的高度是x尺,即,根據(jù)勾股定理,,即.故選:D.【考點(diǎn)】本題考查勾股定理的方程思想,解題的關(guān)鍵是根據(jù)題意利用勾股定理列出方程.5、D【解析】【分析】由菱形的性質(zhì)得到∠FCO=∠ECO,進(jìn)而證明∠ECO=∠ECB=∠FCO=30°,2BE=CE,利用勾股定理得出BC=,再解得菱形的面積為2,最后由陰影部分的面積=S菱形AECF解題.【詳解】解:∵四邊形AECF是菱形,AB=3,∴假設(shè)BE=x,則AE=3﹣x,CE=3﹣x,∵四邊形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=,又∵AE=AB﹣BE=3﹣1=2,則菱形的面積是:AE?BC=2.∴陰影部分的面積=S菱形AECF=cm2.故選:D.【考點(diǎn)】本題考查菱形的性質(zhì)、勾股定理、含30°直角三角形的性質(zhì)等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.6、D【解析】【分析】連接OA、OC,由垂徑定理得AC=BC=AB=5寸,連接OA,設(shè)圓的半徑為x寸,再在Rt△OAC中,由勾股定理列出方程,解方程可得半徑,進(jìn)而直徑可求.【詳解】解:連接OA、OC,如圖:由題意得:C為AB的中點(diǎn),則O、C、D三點(diǎn)共線,OC⊥AB,∴AC=BC=AB=5(寸),設(shè)圓的半徑為x寸,則OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圓材直徑為2×13=26(寸).故選:D【考點(diǎn)】本題主要考查了垂徑定理的應(yīng)用,勾股定理的應(yīng)用,熟練掌握垂徑定理,由勾股定理得出方程是解題的關(guān)鍵.7、D【解析】【分析】分4是直角邊、4是斜邊兩種情況考慮,再根據(jù)勾股定理計(jì)算即可.【詳解】解:當(dāng)4是直角邊時(shí),斜邊==5;當(dāng)4是斜邊時(shí),另一條直角邊=;故選:D.【考點(diǎn)】本題考查的是勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.二、填空題1、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長(zhǎng),進(jìn)而可得出BD的長(zhǎng),根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長(zhǎng).【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點(diǎn)】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.2、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長(zhǎng),再根據(jù)三角形的面積為定值即可求出則點(diǎn)C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點(diǎn)】本題考查了勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方之和一定等于斜邊長(zhǎng)的平方是解題的關(guān)鍵3、169.【解析】【分析】由題意知小正方形的邊長(zhǎng)為7.設(shè)直角三角形中較小邊長(zhǎng)為a,較長(zhǎng)的邊為b,運(yùn)用正切函數(shù)定義求解.【詳解】解:由題意知,小正方形的邊長(zhǎng)為7,設(shè)直角三角形中較小邊長(zhǎng)為a,較長(zhǎng)的邊為b,則tanθ=短邊:長(zhǎng)邊=a:b=5:12.所以b=a,①又以為b=a+7,②聯(lián)立①②,得a=5,b=12.所以大正方形的面積是:a2+b2=25+144=169.故答案是:169.【考點(diǎn)】本題主要考查了解直角三角形、勾股定理的證明和正方形的面積,掌握解直角三角形、勾股定理的證明和正方形的面積是解題的關(guān)鍵.4、
24
0【解析】【分析】先證明從而可得再利用圖形的面積關(guān)系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個(gè)正方形,兩式相減可得:而故答案為:24,0【考點(diǎn)】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),圖形面積之間的關(guān)系,證明是解本題的關(guān)鍵.5、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,從現(xiàn)實(shí)圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.6、34【解析】【分析】首先展開(kāi)圓柱的側(cè)面,即是矩形,接下來(lái)根據(jù)兩點(diǎn)之間線段最短,可知CF的長(zhǎng)即為所求;然后結(jié)合已知條件求出DF與CD的長(zhǎng),再利用勾股定理進(jìn)行計(jì)算即可.【詳解】如圖為圓柱形玻璃容器的側(cè)面展開(kāi)圖,線段CF是蜘蛛由C到F的最短路程.根據(jù)題意,可知DF=18-1-1=16(cm),CD(cm),∴(cm),即蜘蛛所走的最短路線的長(zhǎng)度是34cm.故答案為34.【考點(diǎn)】此題是有關(guān)最短路徑的問(wèn)題,關(guān)鍵在于把立體圖形展開(kāi)成平面圖形,找出最短路徑;7、4.8cm.【解析】【分析】根據(jù)勾股定理可求出斜邊.然后由于同一三角形面積一定,可列方程直接解答.【詳解】∵直角三角形的兩條直角邊分別為6cm,8cm,∴斜邊為=10(cm),設(shè)斜邊上的高為h,則直角三角形的面積為×6×8=×10h,解得:h=4.8cm,這個(gè)直角三角形斜邊上的高為4.8cm.故答案為4.8cm.【考點(diǎn)】此題考查勾股定理,解題關(guān)鍵在于列出方程.8、2.5m【解析】【詳解】設(shè)木棒的長(zhǎng)為xm,根據(jù)勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的長(zhǎng)為2.5m.故答案為2.5m.三、解答題1、A=(n2+1)2,B=n2+1,15,17;12,37【解析】【分析】先根據(jù)整式的混合運(yùn)算法則求出A,進(jìn)而求出B,再把n的值代入即可解答.【詳解】A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,當(dāng)2n=8時(shí),n=4,n2﹣1=42﹣1=15,n2+1=42+1=17;當(dāng)n2﹣1=35時(shí),n=±6(負(fù)值舍去),2n=2×6=12,n2+1=37.直角三角形三邊n2﹣12nB勾股數(shù)組Ⅰ15817勾股數(shù)組Ⅱ351237故答案為:15,17;12,37.【考點(diǎn)】本題考查了勾股數(shù)的定義及勾股定理的逆定理:已知△ABC的三邊滿足a2+b2=c2,則△ABC是直角三角形.2、當(dāng)△ABP為直角三角形時(shí),t=4或.【解析】【分析】當(dāng)△ABP為直角三角形時(shí),分兩種情況:①當(dāng)∠APB為直角時(shí),②當(dāng)∠BAP為直角時(shí),分別求出此時(shí)t的值即可.【詳解】在Rt△ABC中,由勾股定理得:,∴BC=4cm,由題意得:BP=tcm.,①當(dāng)∠APB為直角時(shí),如圖①,點(diǎn)P與點(diǎn)C重合,BP=BC=4cm,∴t=4;②當(dāng)∠BAP為直角時(shí),如圖②,BP=tcm.CP=(t-4)cm,AC=3cm,在Rt△ACP中,,在Rt△BAP中,,即,解得,答:當(dāng)△ABP為直角三角形時(shí),t=4或.【考點(diǎn)】本題考查了勾股定理以及直角三角形的知識(shí),解答本題的關(guān)鍵是掌握勾股定理的應(yīng)用,以及分類討論,否則會(huì)出現(xiàn)漏解.3、證明見(jiàn)解析【解析】【分析】連接AC,根據(jù)四邊形ABCD面積的兩種不同表示形式,結(jié)合全等三角形的性質(zhì)即可求解.【詳解】解:連接AC,∵△ABE≌△BCD,∴AB=BC,AE=BD,BE=CD,∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBE=90°,∴∠ABC=90°,∴S四邊形ABCD=,又∵S四邊形ABCD=,,∴AB2=AE2+BD?BE-BE?DE,∴AB2=AE2+(BD-DE)?BE,即AB2=BE2+AE2.【考點(diǎn)】本題考查了勾股定理的證明,解題時(shí),利用了全
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國(guó)廣告媒體市場(chǎng)前景預(yù)測(cè)及投資規(guī)劃研究報(bào)告
- 2025至2030年中國(guó)球類體育用品市場(chǎng)規(guī)模預(yù)測(cè)及投資戰(zhàn)略咨詢報(bào)告
- 2025至2030年中國(guó)品牌連鎖酒店行業(yè)競(jìng)爭(zhēng)格局分析及投資戰(zhàn)略咨詢報(bào)告
- 東盟背景下秘書(shū)知識(shí)結(jié)構(gòu)和能力結(jié)構(gòu)的構(gòu)建分析研究 商務(wù)秘書(shū)專業(yè)
- 勞務(wù)合同未簽訂書(shū)面協(xié)議
- 乙方租賃停車廠合同范本
- 個(gè)人墳地買賣協(xié)議書(shū)范本
- 內(nèi)蒙古自治區(qū)烏蘭察布市集寧區(qū)億利東方三校聯(lián)考2024-2025學(xué)年七年級(jí)下學(xué)期7月期末英語(yǔ)試題(含答案無(wú)聽(tīng)力原文及音頻)
- 乙方不得終止合同的協(xié)議
- 非謂語(yǔ)動(dòng)詞(講)-2023年高考英語(yǔ)一輪復(fù)習(xí)
- 2024年甘肅省甘南州事業(yè)單位招聘筆試真題
- 咳嗽變異性哮喘病例分析
- 檢驗(yàn)檢測(cè)機(jī)構(gòu)授權(quán)簽字人考核試題(+答案)
- 藥品調(diào)劑差錯(cuò)管理辦法
- 種植基地考核管理辦法
- 2025年保安證考試題目及答案
- 電廠標(biāo)準(zhǔn)化檢修管理介紹
- 建筑鋁合金門窗安裝工程專項(xiàng)施工方案范本
- 吊裝作業(yè)培訓(xùn)課件
- 2025-2030中國(guó)量子科技發(fā)展現(xiàn)狀及商業(yè)化前景預(yù)測(cè)報(bào)告
- TCFCR 011-2025 社會(huì)文物鑒定質(zhì)檢服務(wù)機(jī)構(gòu)執(zhí)業(yè)能力認(rèn)可管理體系
評(píng)論
0/150
提交評(píng)論