




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
高級中學名校試卷PAGEPAGE1山東省泰安市2024-2025學年高二下學期4月期中數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、考生號等填寫在答題卡和試卷指定位置上.2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑.如需改動,用橡皮擦干凈后,再選涂其他答案標號.回答非選擇題時,將答案寫在答題卡上.寫在本試卷上無效.3.考試結(jié)束后,將本試卷和答題卡一并交回.一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.乘積展開后的項數(shù)為()A.9 B.12 C.18 D.24【答案】D【解析】從第一個括號中選一個字母有3種方法,從第二個括號中選一個字母有2種方法,第三個括號中選一個字母有4種方法,故根據(jù)分步乘法計數(shù)原理可知共有(項).故選:D2.函數(shù)的圖象在點處的切線方程為()A. B. C. D.【答案】D【解析】依題意,,因為,所以,所以切線方程為,即,故選:D.3.已知隨機變量的分布列為012則()A. B. C. D.【答案】C【解析】易知,解得;所以分布列為012因此.故選:C4.(1+2x2)(1+x)4的展開式中x3的系數(shù)為()A.12 B.16 C.20 D.24【答案】A【解析】由題意得x3的系數(shù)為,故選A.5.函數(shù)在處取得極值10,則()A.5 B. C.0 D.0或【答案】B【解析】函數(shù),求導得,由在處取得極值10,得,解得或,當時,,函數(shù)在R上遞增,無極值,不符合題意;當時,得,當或時,;當時,,因此是函數(shù)極小值點,符合題意,所以.故選:B6.將甲,乙,丙,丁,戊五名志愿者分配到花樣滑冰,冰球,冰壺3個項目進行培訓,每名志愿者只分配到一個項目,每個項目至少分配1名志愿者,則甲,乙兩人分配到同一個項目的概率為()A. B. C. D.【答案】B【解析】將5名志愿者分為3組,每組的人數(shù)分別為1、1、3或2、2、1,當每組的人數(shù)分別為1、1、3時,不同的方案共有種,當每組的人數(shù)分別為2、2、1,不同的方案共有種;總的分配方案數(shù)為,除了甲乙剩余3人分成兩類:一類是3個項目各一個志愿者,不同的方案共有種;一類是一個項目一個志愿者,一個項目0個志愿者,一個項目2個志愿者,不同的方案共有種;乙兩人分配到同一個項目的分配方案共種,所以甲,乙兩人分配到同一個項目的概率為,故選:B7.甲、乙、丙、丁、戊五名同學進行勞動技術(shù)比賽,決出第1名到第5名的名次.甲和乙去詢問成績,回答者對甲說“很遺憾,你和乙都沒有得到冠軍.”對乙說“你當然不會是最差.”從這兩個回答分析,5人的名次排列可能有多少種不同情況?()A.27種 B.36種 C.54種 D.72種【答案】C【解析】由題意得:甲、乙都不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有3種情況;再排甲,也有3種情況;余下3人有種排法.故共有種不同的情況.故選:C.8.已知,,,,則,,,的大小關系正確的為()A. B.C. D.【答案】D【解析】因為,則,當時,,所以在單調(diào)遞增;因為,,又,故A錯;,所以,故B錯;因為,故C錯;因,所以,所以,故D對;故選:D二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.9.某體育器材廠生產(chǎn)一批乒乓球,設乒乓球的直徑為(單位:厘米),若,其中,則下列結(jié)論正確的是()A.B.C.D.越小,越大【答案】AC【解析】對于正態(tài)分布,其正態(tài)分布曲線關于直線對稱.已知,則該正態(tài)分布曲線關于對稱.所以,選項正確.
,,,.由正態(tài)分布曲線的對稱性可知,,所以,選項錯誤.
因為正態(tài)分布曲線關于對稱,3.95與4.05關于對稱.所以,C選項正確.
越小,說明數(shù)據(jù)越集中在均值附近,正態(tài)分布曲線越“瘦高”.那么越小,選項錯誤.
故選:AC.10.已知函數(shù),其導函數(shù)為,則下列結(jié)論正確是()A.直線是曲線切線B.有三個零點C.D.若在上有最大值,則的取值范圍為【答案】BD【解析】對于A,由,則,由直線,則其斜率為,令,即,解得,,可得切點坐標為,將代入,則,故A錯誤;對于B,由當時,,當時,,則函數(shù)在和單調(diào)遞增,在單調(diào)遞減,由,,,,即,則函數(shù)在,,分別存在唯一零點,即函數(shù)存在三個零點,故B正確;對于C,,故C錯誤;對于D,由B可知函數(shù)在取得極大值,由,則,解得,故D正確.故選:BD.11.對一個量用兩種方法分別算一次,由結(jié)果相同構(gòu)造等式,這種方法稱為“算兩次”的思想方法.利用這種方法,結(jié)合二項式定理,可以得到很多有趣的組合恒等式.例如:考察恒等式,左邊的系數(shù)為,而右邊,的系數(shù)為,因此可得到組合恒等式.利用算兩次的思想方法或其他方法,可以得出下面有關組合數(shù)的等式,正確的是()AB.C.D.【答案】ABD【解析】A選項,,左邊的系數(shù)為,右邊,故的系數(shù)為,故,A正確;B選項,在個人中選人搞衛(wèi)生工作,其中人擦窗戶,人拖地,共有多少種不同的方法?方法一:先從在個人中選人,再從選出的人中選出人擦窗戶,共有種不同的方法;方法二:先從在個人中選人擦窗戶,再從剩余的人中選人拖地,故共有種方法;故,B正確;C選項,,,左邊的系數(shù)為,右邊的系數(shù)為,故,C錯誤;D選項,由題干可得,故,即①,由C可知,,則②,故①-②得,所以,D正確.故選:ABD三、填空題:本題共3小題,每小題5分,共15分.12.用這9個數(shù)字,可以組成沒有重復數(shù)字的三位數(shù)的個數(shù)是______.【答案】448【解析】用這9個數(shù)字,可以組成沒有重復數(shù)字的三位數(shù)的個數(shù)是.故答案為:.13.已知,,,則______.【答案】【解析】由全概率公式可得,則由題意可得,解得.故答案為:14.若函數(shù)有且僅有一個零點,且,則實數(shù)的取值集合為______.【答案】【解析】令有且僅有一個根,且所以,在上有且僅有一個根,當,則令且,則所以在上單調(diào)遞增,x趨向于0時,x趨向于1時所以當,則令在上單調(diào)遞減,且,x趨向于+∞時所以綜上所得,故答案為:.四、解答題:本題共5小題,共77分.解答應寫出文字說明、證明過程或演算步驟.15.在的二項展開式中.(1)若,求展開式中含項的系數(shù);(2)若展開式中含有常數(shù)項,求最小的正整數(shù)的值.解:(1)當時,展開式的通項為令,解得所以展開式中含項的系數(shù)為(2)展開式的通項,由于展開式含有常數(shù)項,可得即,又即當時,取最小值5,此時展開式含有常數(shù)項,因此最小的正整數(shù)的值為5.16.在一盒中裝有大小形狀相同的10個球,其中5個紅球,3個黑球,2個白球.(1)若從這10個球中隨機連續(xù)抽取3次,每次抽1個球,每次抽取后都放回,設取到黑球的個數(shù)為,求的分布列;(2)若從這10個球中隨機連續(xù)抽取3次,每次抽取1個球,每次抽取后都不放回,設取到紅球的個數(shù)為,求的分布列和均值.解:(1)若每次抽取后最放回,則每次取到黑球的概率均為,取到小球的個數(shù)∴∴的分布列為0123(2)若每次抽取后都不放回,取到小球的個數(shù)服從超幾何分布∴的分布列為012317.已知.(1)若函數(shù)在上為增函數(shù),求的取值范圍;(2)當,且時,不等式在上恒成立,求的最大值.解:(1)因,則,因在上為增函數(shù),則即在上恒成立,則,又在上單調(diào)遞減,則當時,則,故的取值范圍是;(2)當時,,當時,不等式等價于,即對任意恒成立,設,,則,設,,則,則在單調(diào)遞增,因,,則存在使,即,所以當時,,;當時,,,故在單調(diào)遞減,在單調(diào)遞增,則所以,又因,故的最大值為.18.甲,乙兩人參加投籃比賽,比賽規(guī)則如下:首次投籃者由抽簽決定,后續(xù)兩人輪流投籃,每人每次投一個球,投進得1分,投不進不得分,兩人投進與否相互獨立,甲乙兩人各完成一次投籃記為一輪比賽.比賽過程中,只要有選手領先對方2分,則該選手獲勝且比賽結(jié)束(不管該輪比賽有沒有完成).已知甲每次投進的概率為,乙每次投進的概率為.第一輪投籃后甲乙兩人各積1分的概率為.記比賽結(jié)束時甲乙兩人的投籃總次數(shù)為.(1)求;(2)求在的情況下,乙獲勝的概率;(3)求甲在3輪比賽之內(nèi)獲勝的概率.解:(1)由題意可知:,∴(2)當時,甲,乙兩人共投籃3次由于比賽結(jié)束,故有一人投籃2次全進,另一人投籃1次未進設“時,比賽結(jié)束”,“乙獲勝”;(3)若甲在3輪比賽之內(nèi)獲勝,則兩人可能的投籃總次數(shù)為3,4,5,6設“甲獲勝”,“時比賽結(jié)束”當時,若甲勝,兩人的投籃情況一定為:甲進,乙不進,甲進,∴當時,若甲勝,兩人的投籃情況一定為:乙不進,甲進,乙不進,甲進,則當時,若甲勝,兩人的投籃情況可能為:甲不進,乙不進,甲進,乙不進,甲進;甲進,乙不進,甲不進,乙不進,甲進;甲進,乙進,甲進,乙不進,甲進;∴當時,若甲勝,則乙先投籃,兩人的投籃情況可能為:乙不進,甲進,乙不進,甲不進,乙不進,甲進;乙不進,甲不進,乙不進,甲進,乙不進,甲進;乙不進,甲進,乙進,甲進,乙不進,甲進;乙進,甲進,乙不進,甲進,乙不進,甲進;∴∴甲在3輪比賽之內(nèi)獲勝的概率為19.已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)對于函數(shù),,若存在,使,則稱函數(shù)與為“互補函數(shù)”,,為“互補數(shù)”.已知當時,函數(shù)與為“互補函數(shù)”且互補數(shù)為.(?。┦欠翊嬖?,使?并說明理由;(ⅱ)若,,請用含有的代數(shù)式表示的最小值.解:(1)∵,∴,①
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 譜細胞抗體鑒定技術(shù)體系
- 秦漢時期名醫(yī)成就與醫(yī)學發(fā)展
- 先進特鋼制造技術(shù)
- 我的秘密課文講解
- 汽車設計核心要點解析
- 牙周病檢查與診斷技術(shù)
- 軟件銷售年度匯報
- 人體器官大腦講解
- 人工智能算法核心功能使用方法詳解
- 胸心外科診療指南解讀
- GB/T 8243.14-2020內(nèi)燃機全流式機油濾清器試驗方法第14部分:復合材料濾清器的冷起動模擬和液壓脈沖耐久試驗
- GB/T 20470-2006臨床實驗室室間質(zhì)量評價要求
- 加強即時檢測的臨床應用管理
- 《大學》教學講解課件
- DB32∕T 4108-2021 混凝土復合保溫砌塊(磚)墻體自保溫系統(tǒng)應用技術(shù)規(guī)程
- 第六章第二節(jié)供應過程的核算課件
- 三甲醫(yī)院醫(yī)療退費管理制度
- 數(shù)學人教A版(2019)選擇性必修第一冊2.5.1 直線與圓的位置關系 教案
- J-STD-020D[1].1中文版
- SF∕T 0124-2021 錄像過程分析技術(shù)規(guī)范
- 四講業(yè)主業(yè)主大會業(yè)主委員會PPT課件
評論
0/150
提交評論