




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
貴州省凱里市中考數(shù)學真題分類(勾股定理)匯編同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、《九章算術(shù)》被尊為古代數(shù)學“群經(jīng)之首”,其卷九勾股定理篇記載:今有圓材埋于壁中,不知大?。凿忎徶?,深一寸,鋸道長一尺.問徑幾何?如圖,大意是,今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這個木材,鋸口深等于1寸,鋸道長1尺,則圓形木材的直徑是(
)(1尺=10寸)A.12寸 B.13寸 C.24寸 D.26寸2、如圖,以Rt△ABC的兩直角邊為邊向外作正方形,其面積分別為S1,S2,若S1=8cm2,S2=17cm2,則斜邊AB的長是(
)A.3cm B.6cm C.4cm D.5cm3、下列各組數(shù)據(jù)為三角形的三邊,能構(gòu)成直角三角形的是(
)A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,54、如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當∠DEB是直角時,DF的長為(
).A.5 B.3 C. D.5、如圖,長方形中,,,將此長方形折疊,使點與點重合,折痕為,則的長為(
)A.12 B.8 C.10 D.136、下列各組數(shù):①3、4、5
②4、5、6
③2.5、6、6.5
④8、15、17,其中是勾股數(shù)的有(
)A.4組 B.3組 C.2組 D.1組7、有一個面積為1的正方形,經(jīng)過一次“生長”后,在他的左右肩上生出兩個小正方形,其中,三個正方形圍成的三角形是直角三角形,再經(jīng)過一次“生長”后,變成了上圖,如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2020次后形成的圖形中所有的正方形的面積和是(
)A.1 B.2021 C.2020 D.2019第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,△ABC中,∠C=90°,AD平分∠BAC,AB=5,AC=3,則BD的長是__.2、如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D在AB上,AD=AC,AF⊥CD交CD于點E,交CB于點F,則CF的長是________________.3、如圖,在高2米,坡角為30°的樓梯表面鋪地毯,地毯的長至少需______米.4、云頂滑雪公園是北京2022年冬奧會7個雪上競賽場館中唯一利用現(xiàn)有雪場改造而成的.下圖左右兩幅圖分別是公園內(nèi)云頂滑雪場U型池的實景圖和示意圖,該場地可以看作是從一個長方體中挖去了半個圓柱而成,它的橫截面圖中半圓的半徑為,其邊緣,點E在上,.一名滑雪愛好者從點A滑到點E,他滑行的最短路線長為_________m.5、已知,在中,,,,則的面積為__.6、《九章算術(shù)》中有“折竹抵地”問題:“今有竹高一丈,末折抵地,去根三尺,問折者高幾何?”題意是:有一根竹子原來高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?如圖,設折斷處距離地面x尺,根據(jù)題意,可列方程為______.7、在繼承和發(fā)揚紅色學校光榮傳統(tǒng),與時俱進,把育英學校建成一所文明的、受社會尊敬的學校升旗儀式上,如圖所示,一根旗桿的升旗的繩垂直落地后還剩余1米,若將繩子拉直,則繩端離旗桿底端的距離有5米.則旗桿的高度______.8、如圖,在中,,分別以,,邊為直徑作半圓,圖中陰影部分在數(shù)學史上稱為“希波克拉底月牙”,當,時,陰影部分的面積為________.三、解答題(7小題,每小題10分,共計70分)1、已知:在中,點在直線上,點在同一條直線上,且,【問題初探】(1)如圖1,若平分,求證:.請依據(jù)以下的簡易思維框圖,寫出完整的證明過程.【變式再探】(2)如圖2,若平分的外角,交的延長線于點,問:和的數(shù)量關(guān)系發(fā)生改變了嗎?若改變,請寫出正確的結(jié)論,并證明;若不改變,請說明理由.【拓展運用】(3)如圖3,在的條件下.若,求的長度.2、有一只喜鵲在一棵高3米的小樹的樹梢上覓食,它的巢筑在距離該樹24米,高為14米的一棵大樹上,且巢離大樹頂部為1米,這時,它聽到巢中幼鳥求助的叫聲,立刻趕過去,如果它的飛行速度為每秒5米,那么它至少幾秒能趕回巢中?3、如圖,有一個水池,水面是一個邊長為16尺的正方形,在水池正中央有一根蘆葦,它高出水面2尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達池邊的水面,則水池里水的深度是多少尺?請你用所學知識解答這個問題.4、如圖,將RtABC紙片沿AD折疊,使直角頂點C與AB邊上的點E重合,若AB=10cm,AC=6cm,求線段BD的長.5、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.某學習小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.6、如圖所示,在中,,,,為邊上的中點.(1)求、的長度;(2)將折疊,使與重合,得折痕;求、的長度.7、如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點.(1)求梯子底端B外移距離BD的長度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.-參考答案-一、單選題1、D【解析】【分析】連接OA、OC,由垂徑定理得AC=BC=AB=5寸,連接OA,設圓的半徑為x寸,再在Rt△OAC中,由勾股定理列出方程,解方程可得半徑,進而直徑可求.【詳解】解:連接OA、OC,如圖:由題意得:C為AB的中點,則O、C、D三點共線,OC⊥AB,∴AC=BC=AB=5(寸),設圓的半徑為x寸,則OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圓材直徑為2×13=26(寸).故選:D【考點】本題主要考查了垂徑定理的應用,勾股定理的應用,熟練掌握垂徑定理,由勾股定理得出方程是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)正方形的面積可以得到BC2=8,AC2=17,然后根據(jù)勾股定理即可得到AB2,從而可以求得AB的值.【詳解】解:S1=8cm2,S2=17cm2,∴BC2=8,AC2=17,∵∠ACB=90°,∴AB2=BC2+AC2,即AB2=8+17=25,∴AB=5cm,故選:D.【考點】本題考查正方形的面積、勾股定理,解答本題的關(guān)鍵是明確正方形的面積是邊長的平方.3、D【解析】【分析】根據(jù)勾股定理的逆定理,看較小的兩邊的平方和是否等于最大的邊的平方即可進行判斷.【詳解】A、42+72≠82,故不能構(gòu)成直角三角形;B、22+22≠22,故不能構(gòu)成直角三角形;C、2+2=4,故不能構(gòu)成三角形,不能構(gòu)成直角三角形;D、52+122=132,故能構(gòu)成直角三角形,故選D.【考點】本題考查的是用勾股定理的逆定理判斷三角形的形狀,即若三角形的三邊符合a2+b2=c2,則此三角形是直角三角形.4、C【解析】【分析】如圖,由題意知,,,,可知三點共線,與重合,在中,由勾股定理得,求的值,設,,在中,由勾股定理得,計算求解即可.【詳解】解:如圖,∵是直角∴由題意知,,∴∴三點共線∴與重合在中,由勾股定理得設,在中,由勾股定理得即解得∴的長為故選C.【考點】本題考查了折疊的性質(zhì),勾股定理等知識.解題的關(guān)鍵在于明確三點共線,與重合.5、D【解析】【分析】設BE為x,則AE為25-x,在由勾股定理有,即可求得BE=13.【詳解】設BE為x,則DE為x,AE為25-x∵四邊形為長方形∴∠EAB=90°∴在中由勾股定理有即化簡得解得故選:D.【考點】本題考查了折疊問題求折痕或其他邊長,主要可根據(jù)折疊前后兩圖形的全等條件,把某個直角三角形的三邊都用同一未知量表示出來,并根據(jù)勾股定理建立方程,進而可以求解.6、C【解析】【詳解】解:∵32+42=52,①符合勾股數(shù)的定義;∵42+52≠62,②不符合勾股數(shù)的定義;∵2.5和6.5不是正整數(shù),③不符合勾股數(shù)的定義;∵82+152=172,④符合勾股數(shù)的定義,是勾股數(shù)的有:①④,共2組,故選:C.7、B【解析】【分析】根據(jù)勾股定理求出“生長”了1次后形成的圖形中所有的正方形的面積和,結(jié)合圖形總結(jié)規(guī)律,根據(jù)規(guī)律解答即可.【詳解】解:由題意得,正方形A的面積為1,由勾股定理得,正方形B的面積+正方形C的面積=1,∴“生長”了1次后形成的圖形中所有的正方形的面積和為2,同理可得,“生長”了2次后形成的圖形中所有的正方形的面積和為3,∴“生長”了3次后形成的圖形中所有的正方形的面積和為4,……∴“生長”了2020次后形成的圖形中所有的正方形的面積和為2021,故選:B.【考點】本題考查了勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.二、填空題1、2.5【解析】【分析】首先先過點D作AB的垂直線段DE,根據(jù)勾股定理把BC求出,然后根據(jù)角平分線的性質(zhì)定理得出DE=DC,再根據(jù)ABC的面積等于ACD的面積加上ABD的面積,把CD求出,最后BD的長度即可求出.【詳解】過點D作DEAB于E,在ABC中,C=,AB=5,AC=3,∴,∵AD平分BAC,∴DE=DC,∵,即,解得CD=1.5,∴BD=4-CD=4-1.5=2.5,故答案為:2.5.【考點】本題考查了勾股定理和角平分線的性質(zhì)定理,正確作出輔助線,根據(jù)面積相等把CD求出是解題的關(guān)鍵.2、1.5【解析】【分析】連接DF,由勾股定理求出AB=5,由等腰三角形的性質(zhì)得出∠CAF=∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【詳解】連接DF,如圖所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,設CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案為1.5.【考點】本題考查了勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì),證明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解決問題的關(guān)鍵.3、2+2【解析】【分析】地毯的豎直的線段加起來等于BC,水平的線段相加正好等于AC,即地毯的總長度至少為(AC+BC).【詳解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴AC=m,∴AC+BC=2+2(m).故答案為2+2.【考點】本題主要考查勾股定理的應用,解此題的關(guān)鍵在于準確理解題中地毯的長度為水平與豎直的線段的和.4、【解析】【分析】根據(jù)題意可得,AD=12m,DE=CD﹣CE=24﹣4=20m,線段AE即為滑行的最短路線長.在Rt△ADE中,根據(jù)勾股定理即可求出滑行的最短路線長.【詳解】解:如圖,根據(jù)題意可知:AD==12,DE=CD﹣CE=24﹣4=20,線段AE即為滑行的最短路線長.在Tt△ADE中,根據(jù)勾股定理,得AE=(m).故答案為:【考點】本題考查了平面展開﹣最短路徑問題,解決本題的關(guān)鍵是掌握圓柱的側(cè)面展開圖是矩形,利用勾股定理求最短距離.5、2或14#14或2【解析】【分析】過點B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時,②△ABC是銳角三角形時,分別求出AC的長,即可求解.【詳解】解:過點作邊的高,中,,,,在中,,,①是鈍角三角形時,,;②是銳角三角形時,,,故答案為:2或14.【考點】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.6、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設未折斷的竹干長為尺,根據(jù)題意可列方程為:.故答案為:.【考點】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結(jié)合的思想的應用.7、12米【解析】【分析】設旗桿的高度是x米,繩子長為(x+1)米,旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求出x的值,從而求出旗桿的高度.【詳解】解:設旗桿的高度為米,根據(jù)題意可得:,解得:,答:旗桿的高度為12米.故答案為:12米.【考點】本題考查勾股定理的應用,關(guān)鍵看到旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求解.8、24【解析】【分析】根據(jù)勾股定理得到AC2=AB2-BC2,先求解AC,再根據(jù)陰影部分的面積等于直角三角形的面積加上以AC,BC為直徑的半圓面積,再減去以AB為直徑的半圓面積即可.【詳解】解:由勾股定理得,AC2=AB2-BC2=64,則陰影部分的面積,故答案為24.【考點】本題考查的是勾股定理、半圓面積計算,掌握勾股定理和半圓面積公式是解題的關(guān)鍵.三、解答題1、(1)見解析
(2);理由見解析
(3)【解析】【分析】(1)根據(jù)ASA證明得BE=BC,得,進一步可得結(jié)論;(2)根據(jù)ASA證明得BE=BC,得;(3)連結(jié),分別求出∠AEB=∠ADE=∠ACB=22.5°,再證明AE=CD,∠ADC=90°,由勾股定理可得AC,由EC=EA+AC可得結(jié)論.【詳解】解:(1)證明平分,在和中,,;.理由:平分,在和中,,.連結(jié),,,,且,由得,,,.【考點】此題主要考查了全等三角形的判定與性質(zhì),勾股定理等知識,連接AD是解答此題的關(guān)鍵.2、它至少5.2秒能趕回巢中.【解析】【分析】過點作于點.求出AF,EF,再根據(jù)勾股定理求出AE,從而求出時間.【詳解】解:如圖所示,米,米,米,米.過點作于點.在中,米,米,所以.所以喜鵲離巢的距離米.喜鵲趕回巢所需的時間為(秒).即它至少5.2秒能趕回巢中.【考點】考核知識點:勾股定理和逆定理運用.構(gòu)造直角三角形是解題關(guān)鍵.3、水池里水的深度是15尺【解析】【分析】根據(jù)勾股定理列出方程,解方程即可.【詳解】解:設水池里水的深度是x尺,由題意得,,解得:x=l5,答:水池里水的深度是15尺.【考點】本題考查的是勾股定理的應用,掌握勾股定理、根據(jù)勾股定理正確列出方程是解題的關(guān)鍵.4、5【解析】【分析】利用勾股定理先求出的值,根據(jù)折疊的性質(zhì)可得出,,,設,列方程求解即可.【詳解】解:由題意可知:,,則,,,設,則,∴解方程得:因此,的長為所以,【考點】本題考查的知識點是勾股定理的應用,根據(jù)題意構(gòu)造直角三角形是解此題的關(guān)鍵.5、84.【解析】【詳解】解:作AD⊥BC于D,如圖所示:設BD=x,則.
在Rt△ABD中,由勾股定理得:,在Rt△ACD中,由勾股定理得:,∴,
解之得:.
∴.
∴.6、(1)B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園教師知識競賽試題及答案
- 物流服務師模擬習題(附答案)
- 口腔修復學模擬考試題(附答案)
- 護理技能大賽急救護理試題(附答案)
- 心理消防知識培訓課件
- 人口分布及影響因素課件
- 云南省宣威市部分學校2024-2025學年高一下學期學業(yè)水平檢測物理試卷(含解析)
- 央企招聘面試常見題庫精 編
- 2025-2030年中國右美沙芬行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 文化產(chǎn)業(yè)發(fā)展引導資金申請2025年行業(yè)前景預測報告
- 16J914-1 公用建筑衛(wèi)生間
- 《湖南省醫(yī)療保險“雙通道”管理藥品使用申請表》
- 甲醇安全技術(shù)說明書SDS
- 小學五年級下科學期末考試質(zhì)量分析
- GB/T 7324-2010通用鋰基潤滑脂
- GB/T 18341-2021地質(zhì)礦產(chǎn)勘查測量規(guī)范
- oh卡牌理論-課件
- 皮肌炎與多肌炎的診療及進展課件
- 合同工期管理臺賬
- 食品安全自身檢查記錄表
- 臨床常見危急值及處理培訓課件
評論
0/150
提交評論