




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
近十年高考理科數(shù)學(xué)試卷一、選擇題(每題1分,共10分)
1.函數(shù)f(x)=log?(x2-ax+1)在區(qū)間[1,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是()
A.(-2,2)
B.(-∞,-2)∪(2,+∞)
C.(-2,2)
D.(-∞,-2)∪(2,+∞)
2.已知集合A={x|x2-3x+2>0},B={x|ax>1},若B?A,則實(shí)數(shù)a的取值范圍是()
A.(-∞,0)∪(1,+∞)
B.(-∞,-1)∪(0,1)
C.(-∞,0)∪(1,+∞)
D.(-1,0)∪(1,+∞)
3.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<π/2)的圖像關(guān)于直線x=π/4對稱,且周期為π,則φ的值為()
A.π/4
B.π/2
C.3π/4
D.0
4.不等式|2x-1|<3的解集是()
A.(-1,2)
B.(-2,1)
C.(-1,4)
D.(-4,1)
5.已知向量a=(1,k),b=(3,-2),若a⊥b,則k的值為()
A.-6
B.6
C.-3
D.3
6.已知等差數(shù)列{a?}的前n項(xiàng)和為S?,若a?=5,a?=9,則S?的值為()
A.64
B.72
C.80
D.88
7.已知圓C的方程為(x-1)2+(y+2)2=4,則圓C的圓心到直線3x-4y-1=0的距離為()
A.1
B.2
C.√2
D.√5
8.已知函數(shù)f(x)=e^x-ax在x=1處取得極值,則a的值為()
A.e
B.1/e
C.2e
D.e2
9.已知三棱錐D-ABC的底面ABC是邊長為2的正三角形,D為側(cè)棱DA的中點(diǎn),則三棱錐D-ABC的體積為()
A.√3/2
B.√3
C.3√3/2
D.3√3
10.已知樣本數(shù)據(jù):3,4,x,5,6的眾數(shù)為4,則樣本數(shù)據(jù)的平均數(shù)為()
A.4
B.4.5
C.5
D.5.5
二、多項(xiàng)選擇題(每題4分,共20分)
1.下列函數(shù)中,在其定義域內(nèi)是奇函數(shù)的是()
A.f(x)=x3
B.f(x)=sin(x)
C.f(x)=x2+1
D.f(x)=tan(x)
2.已知函數(shù)f(x)=x2-mx+1在區(qū)間(-∞,2)上是增函數(shù),則實(shí)數(shù)m的取值范圍是()
A.m≤4
B.m≥4
C.m≤-4
D.m≥-4
3.在等比數(shù)列{a?}中,若a?=6,a?=54,則該數(shù)列的通項(xiàng)公式a?可能為()
A.2?3^(n-1)
B.3?2^(n-1)
C.-2?3^(n-1)
D.-3?2^(n-1)
4.已知點(diǎn)A(1,2)和點(diǎn)B(3,0),則下列說法正確的有()
A.線段AB的長度為2√2
B.線段AB的垂直平分線的方程為x-y-1=0
C.點(diǎn)C(2,1)在以AB為直徑的圓上
D.過點(diǎn)A且與直線AB平行的直線的方程為x-y+1=0
5.已知函數(shù)f(x)=x3-3x+2,則下列說法正確的有()
A.f(x)在x=1處取得極大值
B.f(x)在x=-1處取得極小值
C.f(x)的圖像與x軸有兩個(gè)交點(diǎn)
D.f(x)的圖像與y軸的交點(diǎn)為(0,2)
三、填空題(每題4分,共20分)
1.已知函數(shù)f(x)=log?(x+1),則f(2)的值為_______。
2.不等式|3x-2|>5的解集是_______。
3.已知向量a=(3,-1),b=(-1,2),則向量a與向量b的夾角θ的余弦值cosθ=_______。
4.已知等差數(shù)列{a?}的首項(xiàng)為1,公差為2,則該數(shù)列的前10項(xiàng)和S??=_______。
5.已知圓C的方程為(x+1)2+(y-3)2=16,則圓C的圓心坐標(biāo)為_______,半徑r=_______。
四、計(jì)算題(每題10分,共50分)
1.計(jì)算:lim(x→2)(x3-8)/(x-2)
2.解方程:2cos2θ+3sinθ-1=0(0≤θ<2π)
3.在△ABC中,已知角A=60°,角B=45°,邊BC=6,求邊AC的長度。
4.已知函數(shù)f(x)=x2-4x+3,求函數(shù)在區(qū)間[1,4]上的最大值和最小值。
5.計(jì)算定積分:∫[0,1](x3-2x+1)dx
本專業(yè)課理論基礎(chǔ)試卷答案及知識點(diǎn)總結(jié)如下
一、選擇題答案及解析
1.C
解析:函數(shù)f(x)=log?(x2-ax+1)單調(diào)遞增,需其導(dǎo)數(shù)f'(x)=(2x-a)/(3(x2-ax+1)ln3)≥0在[1,+∞)上恒成立。即2x-a≥0在[1,+∞)上恒成立,故a≤2x在[1,+∞)上恒成立。由于2x在[1,+∞)上最小值為2,所以a≤2。又因?yàn)閤2-ax+1>0恒成立,判別式Δ=a2-4<0,得-2<a<2。故a的取值范圍是(-2,2)。
2.C
解析:由B?A,分B為空集和B非空集兩種情況討論。
若B=?,則不等式ax>1對任意x∈R無解,此時(shí)a≤0。
若B≠?,由于A={x|x<1或x>2},需B?{x|x<1或x>2}。
若B?{x|x<1},則ax>1對x∈(-∞,1)恒成立,需a>0且a·(-∞)>1,矛盾。
若B?{x|x>2},則ax>1對x∈(2,+∞)恒成立,需a>0且a·2>1,即a>1/2。
綜上,a的取值范圍是(-∞,0)∪(1/2,+∞)。結(jié)合選項(xiàng),應(yīng)選C。
3.A
解析:函數(shù)f(x)=sin(ωx+φ)的圖像關(guān)于直線x=π/4對稱,則f(π/4+t)=f(π/4-t)對任意t∈R成立。即sin[ω(π/4+t)+φ]=sin[ω(π/4-t)+φ]。利用正弦函數(shù)性質(zhì),得ω(π/4+t)+φ=ω(π/4-t)+φ+2kπ或ω(π/4+t)+φ=π-[ω(π/4-t)+φ]+2kπ(k∈Z)。
由前者得2ωt=2kπ,即ω=k。由后者得2ω(π/4)=π-2φ+2kπ,即ωπ/2=π/2-2φ+2kπ,得ω=1-4φ/π+4k。由于ω>0且|φ|<π/2,取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-ωπ/2)/(-4)=(π/4-(1-4φ/π)π/2)/(-4)=(π/4-π/2+2φπ)/(-4)=(-π/4+2φπ)/(-4)=(π/16-φπ/2)。整理得3φπ/2=π/16,φ=π/24。但|φ|<π/2,此解不符合。再取k=1,得ω=1-4φ/π+4。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-7π/2-2φπ)/(-4)=(7π/2+2φπ)/4=7π/8+φπ/2。整理得φ/2-φπ/2=7π/8,φ(1-π/2)=7π/8,φ=7π/8/(1-π/2)=7π/8/(2/2-π/2)=7π/8/(2π/2-π/2)=7π/8/(π/2)=7π/8*2/π=7/4。但|φ|<π/2,此解不符合。再取k=-1,得ω=1-4φ/π-4。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π-4)π/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π)/2)/(-4)=(π/4+π/4-2φπ-4π)/(-4)=(π/2-2φπ-4π)/(-4)=(-3π/2-2φπ)/(-4)=(3π/2+2φπ)/4=3π/8+φπ/2。整理得φ/2-φπ/2=3π/8,φ(1-π/2)=3π/8,φ=3π/8/(1-π/2)=3π/8/(2/2-π/2)=3π/8/(2π/2-π/2)=3π/8/(π/2)=3π/8*2/π=3/4。但|φ|<π/2,此解不符合。再取k=0,得ω=1-4φ/π。此時(shí)φ=(π/4-(ω+4)π/2)/(-4)=(π/4-(1-4φ/π+4)π/2)/(-4)=(π/4-(π/2-2φπ+4π)/2)/(-4)=(π/4-(-π/2+2φπ+4π
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林省長春市汽開區(qū)2024-2025學(xué)年八年級下學(xué)期期末考試數(shù)學(xué)試卷(含詳解)
- 工程與建筑類考試報(bào)名全流程指南
- 基因工程和細(xì)胞利用(共30題)-2023年高考生物總復(fù)習(xí)(原卷版)
- 2025至2030年中國城市公共交通市場前景預(yù)測及投資規(guī)劃研究報(bào)告
- 化工行業(yè)勞動(dòng)合同書
- MySQL數(shù)據(jù)庫應(yīng)用實(shí)戰(zhàn)教程(慕課版)(第2版)實(shí)訓(xùn)指導(dǎo)-8-1 創(chuàng)建數(shù)據(jù)庫
- 親子出游訂酒店合同范本
- 兼職游泳教練勞務(wù)合同范本
- 專利授權(quán)獨(dú)家協(xié)議書模板
- 廣東省惠州市2026屆高三上學(xué)期第一次調(diào)研考試地理試卷(含答案)
- GB/T 45891-2025肥料和土壤調(diào)理劑肥料原料中腐植酸和疏水性黃腐酸含量的測定
- 你的樣子就是教育的樣子-一位校長對教師行為規(guī)范的深度思考建議收藏
- 《無人機(jī)概論》高職無人機(jī)應(yīng)用技術(shù)專業(yè)全套教學(xué)課件
- 2025廣西百色工業(yè)和信息化委員會(huì)事業(yè)單位招聘擬聘高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 重慶酉陽縣公安局招聘輔警真題
- (正式版)SHT 3046-2024 石油化工立式圓筒形鋼制焊接儲罐設(shè)計(jì)規(guī)范
- 建筑工程混凝土漏斗施工技術(shù)總結(jié)
- KAX-1鐵路客車安全記錄儀檢修說明書
- 食材配送投標(biāo)服務(wù)方案
- 舌口部運(yùn)動(dòng)功能評估記錄表
- 裝片工序簡介(課堂PPT)
評論
0/150
提交評論