




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省凌海市中考數學真題分類(平行線的證明)匯編專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,,的角平分線交于點,若,,則的度數(
)A. B. C. D.2、如圖,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一點,將ACD沿CD翻折后得到CED,邊CE交AB于點F.若DEF中有兩個角相等,則∠ACD的度數為(
)A.15°或20° B.20°或30° C.15°或30° D.15°或25°3、如圖,在△ABC中,D為BC上一點,∠1=∠2,∠3=∠4,∠BAC=105°,則∠DAC的度數為(
)A.80° B.82° C.84° D.86°4、給定下列條件,不能判定三角形為直角三角形的是(
)A.∠A:∠B:∠C=1∶2∶3 B.∠A+∠B=∠CC. D.∠A=2∠B=3∠C5、若△ABC三個角的大小滿足條件∠A:∠B:∠C=1:3:4,則∠C的大小為(
)A.22.5° B.45° C.67.5° D.90°6、如圖,∠B=∠C,則∠ADC與∠AEB的大小關系是(
)A.∠ADC>∠AEB B.∠ADC<∠AEBC.∠ADC=∠AEB D.大小關系不確定7、如圖,,若,則的度數是(
)A.80° B.70° C.65° D.60°8、如下圖,在下列條件中,能判定AB//CD的是(
)A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、用反證法證明:“如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行”.第一步應假設:______.2、如圖a是長方形紙帶,∠DEF=16°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠CFE的度數是__.3、如圖,把一張直角△ABC紙片沿DE折疊,已知∠1=68°,則∠2的度數為_______.4、請把以下說理過程補充完整:如圖,AB∥CD,∠C=∠D,如果∠1=∠2,那么∠E與∠C互為補角嗎?說說你的理由.解:因為∠1=∠2,根據___________,所以EF∥________.又因為AB∥CD,根據___________,所以EF∥________.根據____________,所以∠E+________=_________°.又因為∠C=∠D,所以∠E+________=_________°,所以∠E與∠C互為補角.5、如圖,將三角形紙片ABC沿EF折疊,使得A點落在BC上點D處,連接DE,DF,.設,,則α與β之間的數量關系是________.6、“兩條直線被第三條直線所截,內錯角相等”是___命題.(填“真”或“假”)7、如圖,將三角形紙片ABC按如圖方式折疊:折痕分別為DC和DE,點A與BC邊上的點G重合,點B與DG延長線上的點F重合.若滿足∠ACB=40°,則∠CEF=_______度.三、解答題(7小題,每小題10分,共計70分)1、已知:如圖,O是內一點,且OB、OC分別平分、.(1)若,求;(2)若,求;(3)若,利用第(2)題的結論求.2、在①DE=BC,②,③AE=AC這三個條件中選擇其中一個,補充在下面的問題中,并完成問題的解答.問題:如圖,AC平分,D是AC上的一點,.若______,求證:.3、如圖,AB⊥BC于點B,DC⊥BC于點C,DE平分∠ADC交BC于點E,點F為線段CD延長線上一點,∠BAF=∠EDF(1)求證:∠DAF=∠F;(2)在不添加任何輔助線的情況下,請直接寫出所有與∠CED互余的角.4、已知:如圖,點A、B、C在一條直線上,AD∥BE,∠1=∠2,求證:∠A=∠E.5、已知:如圖AB⊥BC于B,CD⊥BC于C,∠1=∠2.求證:BE∥CF.證明:∵AB⊥BC,CD⊥BC(已知)∴∠ABC=90°,∠BCD=90°()即∠1+∠3=90°,∠2+∠4=90°又∵∠1=∠2()∴=()∴BE∥CF()6、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點O.(1)求證:.(2)如圖1,若∠A=60°,請直接寫出BE,CD,BC的數量關系.(3)如圖2,∠A=90°,F是ED的中點,連接FO.①求證:BC?BE?CD=2OF.②延長FO交BC于點G,若OF=2,△DEO的面積為10,直接寫出OG的長.7、如圖,已知于點,于點,,試說明.解:因為(已知),所以().同理.所以().即.因為(已知),所以().所以().-參考答案-一、單選題1、A【解析】【分析】法一:延長PC交BD于E,設AC、PB交于F,根據三角形的內角和定理得到∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根據三角形的外角性質得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD?∠D,根據PB、PC是角平分線得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A?∠D,代入即可求出∠P.法二:延長DC,與AB交于點E.設AC與BP相交于O,則∠AOB=∠POC,可得∠P+∠ACD=∠A+∠ABD,代入計算即可.【詳解】解:法一:延長PC交BD于E,設AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD?∠D,∴∠P+∠PBE=∠PCD?∠D,∴2∠P+∠PCF+∠PBE=∠A?∠D+∠ABF+∠PCD,∵PB、PC是角平分線∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A?∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延長DC,與AB交于點E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD=∠A+∠AEC=48°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=48°+∠AEC=48°+∠ABD+10°,整理得∠ACD?∠ABD=58°.設AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=48°?(∠ACD?∠ABD)=19°.故選A.【考點】本題主要考查對三角形的內角和定理,三角形的外角性質,對頂角的性質,角平分線的性質等知識點的理解和掌握,能熟練地運用這些性質進行計算是解此題的關鍵.2、C【解析】【分析】由三角形的內角和定理可求解∠A=40°,設∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,可分三種情況:當∠DFE=∠E=40°時;當∠FDE=∠E=40°時;當∠DFE=∠FDE時,根據∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【詳解】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B-∠A=10°,∴∠A=40°,∠B=50°,設∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,當∠DFE=∠E=40°時,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°-40°-40°=100°,∴140°-x=100°+40°+x,解得x=0(不存在);當∠FDE=∠E=40°時,∴140°-x=40°+40°+x,解得x=30°,即∠ACD=30°;當∠DFE=∠FDE時,∵∠FDE+∠DFE+∠E=180°,∴∠FDE==70°,∴140°-x=70°+40°+x,解得x=15,即∠ACD=15°,綜上,∠ACD=15°或30°,故選:C.【考點】本題主要考查直角三角形的性質,等腰三角形的性質,三角形的內角和定理,根據∠ADC=∠CDE分三種情況列方程是解題的關鍵.3、A【解析】【分析】根據三角形的內角和定理和三角形的外角性質即可解決.【詳解】解:∵∠BAC=105°,∴∠2+∠3=75°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=75°,∴∠2=25°.∴∠DAC=105°?25°=80°.故選A.【考點】此題主要考查了三角形的外角性質以及三角形內角和定理,熟記三角形的內角和定理,三角形的外角性質是解題的關鍵.4、D【解析】【分析】根據三角形的內角和等于180°求出最大角,然后選擇即可.【詳解】解:A、最大角∠C=×180°=90°,是直角三角形,不符合題意;B、最大角∠C=180°÷2=90°,是直角三角形,不符合題意;C、設∠A=x,則∠B=2x,∠C=3x,所以,x+2x+3x=180°,解得x=30°,最大角∠C=3×30°=90°,是直角三角形,不符合題意;D、設∠A=x,則∠B=x,∠C=x,所以,,解得,是鈍角三角形,符合題意.故選:D.【考點】本題考查了三角形的內角和定理,求出各選項中的最大角是解題的關鍵.5、D【解析】【分析】先用∠A表示出∠B、∠C,再根據三角形的內角和定理求出∠A、∠C得結論.【詳解】解:∵∠A:∠B:∠C=1:3:4,∴∠B=3∠A,∠C=4∠A.∵∠A+∠B+∠C=180,∴∠A+3∠A+4∠A=180.∴∠A=22.5.∴∠C=4∠A=4×22.5=90.故選:D.【考點】本題考查了三角形的內角和定理,掌握“三角形的內角和等于180”是解決本題的關鍵.6、C【解析】【分析】首先在△ADC中有內角和為180°,即∠A+∠C+∠ADC=180°,在△AEB中有內角和為180°,即∠AEB+∠A+∠B=180°,又知∠B=∠C,故可得∠AEB=∠ADC.【詳解】在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴∠ADC=∠AEB.故選C.【考點】本題主要考查三角形內角和定理的應用,利用了三角形內角和為180度,此題難度不大.7、B【解析】【分析】由根據全等三角形的性質可得,再利用三角形內角和進行求解即可.【詳解】,,,,,,故選:B.【考點】本題考查了全等三角形的性質及三角形的內角和定理,熟練掌握知識點是解題的關鍵.8、C【解析】【詳解】根據平行線的判定,可由∠2=∠3,根據內錯角相等,兩直線平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故選C.二、填空題1、這兩條直線不平行【解析】【分析】本題需先根據已知條件和反證法的特點進行證明,即可求出答案.【詳解】證明:已知兩條直線都和第三條直線平行;
假設這兩條直線不平行,則兩條直線有交點,因為過直線外一點有且只有一條直線與已知直線平行因此,兩條直線有交點時,它們不可能同時與第三條直線平行因此假設與結論矛盾.故假設不成立,即如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.故答案為:這兩條直線不平行.【考點】本題主要考查了反證法,在解題時要根據反證法的特點進行證明是本題的關鍵.2、132°##132度【解析】【分析】先由矩形的性質得出∠BFE=∠DEF=16°,再根據折疊的性質得出∠CFG=180°﹣2∠BFE,由∠CFE=∠CFG﹣∠EFG即可得出答案.【詳解】解:∵四邊形ABCD是矩形,∴AD∥BC,∴∠BFE=∠DEF=16°,∴∠CFE=∠CFG﹣∠EFG=180°﹣2∠BFE﹣∠EFG=180°﹣3×16°=132°,故答案為:132°.【考點】本題考查了翻折變換的性質、矩形的性質、平行線的性質;熟練掌握翻折變換和矩形的性質,弄清各個角之間的關系是解決問題的關鍵.3、46°【解析】【分析】由題意得∠C′=90°,由折疊得∠CDE=∠C′DE,那么∠CDE=180°﹣∠1=112°,故∠C′DE=∠C′DA+∠1=112°,進而推斷出∠C′DA=112°﹣68°=44°,從而求得∠2.【詳解】解:由題意得:∠C′=90°,由折疊得∠CDE=∠C′DE.∵∠1=68°,∴∠CDE=180°﹣∠1=112°.∴∠C′DE=∠C′DA+∠1=112°.∴∠C′DA=112°﹣68°=44°.∴∠2=180°﹣∠C′﹣∠C′DA=46°.故答案為:46°.【考點】本題考查了三角形折疊問題和三角形內角和,解題關鍵是根據折疊得出角相等,利用三角形內角和求解.4、內錯角相等,兩直線平行;AB;平行于同一條直線的兩條直線平行;CD;兩直線平行,同旁內角互補;∠D;180;∠C;180【解析】【分析】由已知角相等,利用內錯角相等兩直線平行得到AB與EF平行,再由AB與CD平行,利用平行于同一條直線的兩直線平行即可得EF與CD平行,然后由兩直線平行,同旁內角互補可得∠E+∠D=180°,最后等量代換得到∠E+∠C=180°.【詳解】解:因為∠1=∠2,根據_內錯角相等,兩直線平行,所以EF∥__AB_.又因為AB∥CD,根據_平行于同一條直線的兩條直線平行,所以EF∥__CD___.根據兩直線平行,同旁內角互補,所以∠E+_∠D=__180°.又因為∠C=∠D,所以∠E+_∠C_=_180°,所以∠E與∠C互為補角.【考點】此題考查了平行線的判定與性質,熟練掌握平行線的判定與性質是解本題的關鍵.5、【解析】【分析】由折疊的性質可知:,再利用三角形內角和定理及角之間的關系證明,,即可找出α與β之間的數量關系.【詳解】解:由折疊的性質可知:,∵,∴,∴,∵,,∴,∴,故答案為:.【考點】本題考查折疊的性質,三角形內角和定理,解題的關鍵是根據折疊的性質求出,根據角之間的關系求出,.6、假【解析】【分析】由正確的題設得出正確的結論是真命題,由正確的題設不能得出正確結論是假命題,判定此命題的正誤即可得到答案.【詳解】解:∵當兩條平行線被第三條直線所截,內錯角相等,∴兩條直線被第三條直線所截,內錯角有相等或不相等兩種情況∴原命題錯誤,是假命題,故答案為假.【考點】本題考查了判斷命題的真假的知識,解題的關鍵是根據命題作出正確的判斷,必要時可以舉出反例.7、40【解析】【詳解】由折疊可得∠EDC=90°,∠BED=∠FED,由角平分線和三角形內角和得∠DEC=70°,再利用三角形外角的性質可得答案.【解答】解:由折疊可得:∠EDF=,,∵∠BDF+∠GDA=180°,∴∠EDF+∠GDC=90°,∵∠ACB=40°,∴∠GCD=40÷2=20°,∴∠DEC=180°﹣90°﹣20°=70°,由折疊可得:∠BED=∠DEF=70°+∠CEF,由三角形外角的性質可得,∠BED=90°+20°=110°,∴70°+∠CEF=110°,即∠CEF=40°.故答案為:40.【考點】本題考查圖形的折疊,熟知折疊前后圖形的形狀和大小相等、得到∠BED=∠DEF并利用三角形內角和是解本題的關鍵,屬于常見題型.三、解答題1、(1);(2);(3)【解析】【分析】證明∠BOC=90°+∠A,(1)(2)(3)利用這個公式計算即可解決問題;【詳解】解:∵OB、OC分別平分∠ABC、∠ACB,∴∠1=∠2=∠ABC,∠3=∠4=∠ACB,∵∠BOC=180°?(∠2+∠4),∴∠BOC=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=90°+∠A.(1)∵∠A=48°,∴∠BOC=90°+×48°=114°.(2)∵∠A=n°,∴∠BOC=90°+n°,∴.(3)∵∠BOC=130°,∴130°=90°+∠A,∴∠A=80°.【考點】本題考查三角形內角和定理,角平分線的定義等知識,解題的關鍵是證明∠BOC=90°+∠A.2、證明見解析【解析】【分析】選②,根據角平分線的性質可得∠EAD=∠BAC.由三角形的內角和定理可得,,即可求解,若選③,證明,即可求解.【詳解】若選②;證明:∵AC平分∠BAE,∴∠EAD=∠BAC.∵∠E=∠C,∴.∵,.∴∠ADE=∠ABC.若選③,證明:∵AC平分∠BAE,∴.在△ABC和△ADE中,∴.∴.【考點】本題考查了三角形的內角和定理,三角形求得的性質與判定,綜合運用以上知識是解題的關鍵.3、(1)證明見解析;(2)與∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【解析】【分析】(1)依據AB⊥BC于點B,DC⊥BC于點C,即可得到AB∥CF,進而得出∠BAF+∠F=180°,再根據∠BAF=∠EDF,即可得出ED∥AF,依據三角形外角性質以及角平分線的定義,即可得到∠DAF=∠F;(2)結合圖形,根據余角的概念,即可得到所有與∠CED互余的角.【詳解】解:(1)∵AB⊥BC于點B,DC⊥BC于點C,∴∠B+∠C=180°,∴AB∥CF,∴∠BAF+∠F=180°,又∵∠BAF=∠EDF,∴∠EDF+∠F=180°,∴ED∥AF,∴∠ADE=∠DAF,∠EDC=∠F,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠DAF=∠F;(2)∵∠C=90°,∴∠CED+∠CDE=90°,∴∠CED與∠CDE互余,又∵∠ADE=∠DAF=∠EDC=∠F,∴與∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【考點】本題主要考查了平行線的判定與性質、余角的概念,平行線的判定是由角的數量關系判斷兩直線的位置關系,平行線的性質是由平行關系來尋找角的數量關系.4、見解析【解析】【分析】先根據平行線的性質由AD∥BE得∠A=∠EBC,再根據平行線的判定由∠1=∠2得DE∥AC,則∠E=∠EBC,所以∠A=∠E.【詳解】證明:∵AD∥BE,∴∠A=∠EBC,∵∠1=∠2,∴DE∥AC,∴∠E=∠EBC,∴∠A=∠E.【考點】考查了平行線性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.5、見解析【解析】【分析】由垂直的定義得∠ABC=90°,∠BCD=90°,即∠1+∠3=90°,∠2+∠4=90°,求出∠3=∠4,即可得出結論.【詳解】解:,∵AB⊥BC,CD⊥BC(已知),∴∠ABC=90°,∠BCD=90°(垂直的定義),即∠1+∠3=90°,∠2+∠4=90°,又∵∠1=∠2(已知),∴∠3=∠4(等角的余角相等),∴BE∥CF(內錯角相等,兩直線平行).【考點】本題考查了平行線的判定以及垂直的定義;熟練掌握平行線的判定方法是解題的關鍵.6、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據三角形內角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內角和可得結論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結論;(3)①延長OF到點M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據此即可證明結論;②利用①的結論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消防設施操作員培訓模塊1 職業(yè)道德
- 室外環(huán)境智能監(jiān)測數據分析平臺考核試卷
- 體驗式營銷在衛(wèi)生潔具渠道中的應用考核試卷
- 跨文化管理在衛(wèi)生陶瓷企業(yè)員工激勵中的應用考核試卷
- 智能藥品監(jiān)管與合規(guī)系統(tǒng)構建考核試卷
- 中等教育學校文化氛圍中的性別平等教育考核試卷
- 噴射系統(tǒng)與發(fā)動機冷卻系統(tǒng)的相互作用考核試卷
- 數字體溫計材質的能效分析考核試卷
- 期末考點突破:任務型閱讀20篇-外研版(三起)四年級英語下學期專項訓練(含答案解析)
- 化學平衡 -2025年新高二化學暑假課(人教版)
- 危險品運輸資格(裝卸管理人員)考試2025年題庫及答案
- 2025年行政執(zhí)法資格證考試試題庫及答案
- 肺炎臨床教學查房
- 保險銷售品質管理辦法
- 職業(yè)技能《水泥質量檢測工》知識競賽試題庫與答案
- 2025年四川省瀘州市中考招生考試數學真題試卷(真題+答案)
- 集成電路及半導體行業(yè)特氣安全培訓
- 吞咽障礙的護理和措施
- 2025年湖南省中考數學真題(解析版)
- 2025年西藏自治區(qū)公務員遴選考試申論真題
- 生產車間獎罰管理制度
評論
0/150
提交評論