貴州省興義市重點達標名校2026屆中考沖刺卷數(shù)學試題含解析_第1頁
貴州省興義市重點達標名校2026屆中考沖刺卷數(shù)學試題含解析_第2頁
貴州省興義市重點達標名校2026屆中考沖刺卷數(shù)學試題含解析_第3頁
貴州省興義市重點達標名校2026屆中考沖刺卷數(shù)學試題含解析_第4頁
貴州省興義市重點達標名校2026屆中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省興義市重點達標名校2026屆中考沖刺卷數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.下列運算正確的是()A.a(chǎn)?a2=a2 B.(ab)2=ab C.3﹣1= D.2.如圖,小明為了測量河寬AB,先在BA延長線上取一點D,再在同岸取一點C,測得∠CAD=60°,∠BCA=30°,AC=15m,那么河AB寬為()A.15m B.m C.m D.m3.已知拋物線y=ax2+bx+c與x軸交于點A和點B,頂點為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.124.“a是實數(shù),”這一事件是()A.不可能事件 B.不確定事件 C.隨機事件 D.必然事件5.如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①3a+b<0;②-1≤a≤-23;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關于x的方程ax2A.1個B.2個C.3個D.4個6.關于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a(chǎn)≠±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.a(chǎn)=±17.已知:如圖,在平面直角坐標系xOy中,等邊△AOB的邊長為6,點C在邊OA上,點D在邊AB上,且OC=3BD,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點C和點D,則k的值為()A. B. C. D.8.如圖,四邊形ABCD內接于⊙O,若四邊形ABCO是平行四邊形,則∠ADC的大小為()A. B. C. D.9.利用運算律簡便計算52×(–999)+49×(–999)+999正確的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–199810.函數(shù)y=中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在四邊形ABCD中,對角線AC,BD交于點O,OA=OC,OB=OD,添加一個條件使四邊形ABCD是菱形,那么所添加的條件可以是___________(寫出一個即可).12.直線y=2x+1經(jīng)過點(0,a),則a=________.13.如圖,在平面直角坐標系中,以點O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M,N為圓心.大于MN的長為半徑畫弧,兩弧在第二象限內交于點p(a,b),則a與b的數(shù)量關系是________.14.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正確的是_____.15.請寫出一個比2大且比4小的無理數(shù):________.16.某風扇在網(wǎng)上累計銷量約1570000臺,請將1570000用科學記數(shù)法表示為_____.三、解答題(共8題,共72分)17.(8分)如圖,△ABD是⊙O的內接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.(1)求證:BC是⊙O的切線;(2)若⊙O的半徑為6,BC=8,求弦BD的長.18.(8分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉過程中,半圓弧與直線CD只有一個交點時,設此交點與點C的距離為d,直接寫出d的取值范圍.19.(8分)某超市在春節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉動轉盤的方式享受折扣和優(yōu)惠,在每個轉盤中指針指向每個區(qū)域的可能性均相同,若指針指向分界線,則重新轉動轉盤,區(qū)域對應的優(yōu)惠方式如下,A1,A2,A3區(qū)域分別對應9折8折和7折優(yōu)惠,B1,B2,B3,B4區(qū)域對應不優(yōu)惠?本次活動共有兩種方式.方式一:轉動轉盤甲,指針指向折扣區(qū)域時,所購物品享受對應的折扣優(yōu)惠,指針指向其他區(qū)域無優(yōu)惠;方式二:同時轉動轉盤甲和轉盤乙,若兩個轉盤的指針均指向折扣區(qū)域時,所購物品享受折上折的優(yōu)惠,其他情況無優(yōu)惠.(1)若顧客選擇方式一,則享受優(yōu)惠的概率為;(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能顧客享受折上折優(yōu)惠的概率.20.(8分)如圖,已知A(3,0),B(0,﹣1),連接AB,過B點作AB的垂線段BC,使BA=BC,連接AC.如圖1,求C點坐標;如圖2,若P點從A點出發(fā)沿x軸向左平移,連接BP,作等腰直角△BPQ,連接CQ,當點P在線段OA上,求證:PA=CQ;在(2)的條件下若C、P,Q三點共線,求此時∠APB的度數(shù)及P點坐標.21.(8分)先化簡,然后從﹣<x<的范圍內選取一個合適的整數(shù)作為x的值代入求值.22.(10分)如圖,在四邊形中,為一條對角線,,,.為的中點,連結.(1)求證:四邊形為菱形;(2)連結,若平分,,求的長.23.(12分)為了貫徹“減負增效”精神,掌握九年級600名學生每天的自主學習情況,某校學生會隨機抽查了九年級的部分學生,并調查他們每天自主學習的時間.根據(jù)調查結果,制作了兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據(jù)統(tǒng)計圖中的信息回答下列問題:(1)本次調查的學生人數(shù)是人;(2)圖2中α是度,并將圖1條形統(tǒng)計圖補充完整;(3)請估算該校九年級學生自主學習時間不少于1.5小時有人;(4)老師想從學習效果較好的4位同學(分別記為A、B、C、D,其中A為小亮)隨機選擇兩位進行學習經(jīng)驗交流,用列表法或樹狀圖的方法求出選中小亮A的概率.24.經(jīng)過江漢平原的滬蓉(上海﹣成都)高速鐵路即將動工.工程需要測量漢江某一段的寬度.如圖①,一測量員在江岸邊的A處測得對岸岸邊的一根標桿B在它的正北方向,測量員從A點開始沿岸邊向正東方向前進100米到達點C處,測得∠ACB=68°.(1)求所測之處江的寬度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的測量方案外,請你再設計一種測量江寬的方案,并在圖②中畫出圖形.(不用考慮計算問題,敘述清楚即可)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)同底數(shù)冪的乘法法則對A進行判斷;根據(jù)積的乘方對B進行判斷;根據(jù)負整數(shù)指數(shù)冪的意義對C進行判斷;根據(jù)二次根式的加減法對D進行判斷.【詳解】解:A、原式=a3,所以A選項錯誤;B、原式=a2b2,所以B選項錯誤;C、原式=,所以C選項正確;D、原式=2,所以D選項錯誤.故選:C.【點睛】本題考查了二次根式的加減法:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數(shù)相同的二次根式進行合并,合并方法為系數(shù)相加減,根式不變.也考查了整式的運算.2、A【解析】過C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=AC=×15=7.5m,CE=AC?cos30°=15×=,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE?tan60°=×=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故選A.【點睛】本題考查的知識點是解直角三角形的應用,關鍵是構建直角三角形,解直角三角形求出答案.3、B【解析】

設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),利用二次函數(shù)的性質得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據(jù)等腰直角三角形的性質得到||=?,然后進行化簡可得到b2-1ac的值.【詳解】設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),頂點P的坐標為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,

∴||=?,=,∴b2-1ac=1.故選B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數(shù)的性質和等腰直角三角形的性質.4、D【解析】是實數(shù),||一定大于等于0,是必然事件,故選D.5、D【解析】

利用拋物線開口方向得到a<0,再由拋物線的對稱軸方程得到b=-2a,則3a+b=a,于是可對①進行判斷;利用2≤c≤3和c=-3a可對②進行判斷;利用二次函數(shù)的性質可對③進行判斷;根據(jù)拋物線y=ax2+bx+c與直線y=n-1有兩個交點可對④進行判斷.【詳解】∵拋物線開口向下,∴a<0,而拋物線的對稱軸為直線x=-b2a∴3a+b=3a-2a=a<0,所以①正確;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23∵拋物線的頂點坐標(1,n),∴x=1時,二次函數(shù)值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正確;∵拋物線的頂點坐標(1,n),∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,∴關于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根,所以④正確.故選D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次項系數(shù)a決定拋物線的開口方向和大?。攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數(shù)由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.6、C【解析】

根據(jù)一元一次方程的定義即可求出答案.【詳解】由題意可知:,解得a=?1故選C.【點睛】本題考查一元二次方程的定義,解題的關鍵是熟練運用一元二次方程的定義,本題屬于基礎題型.7、A【解析】試題分析:過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,如圖所示.設BD=a,則OC=3a.∵△AOB為邊長為1的等邊三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴點C(a,a).同理,可求出點D的坐標為(1﹣a,a).∵反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點C和點D,∴k=a×a=(1﹣a)×a,∴a=,k=.故選A.8、C【解析】

根據(jù)平行四邊形的性質和圓周角定理可得出答案.【詳解】根據(jù)平行四邊形的性質可知∠B=∠AOC,根據(jù)圓內接四邊形的對角互補可知∠B+∠D=180°,根據(jù)圓周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故選C【點睛】該題主要考查了圓周角定理及其應用問題;應牢固掌握該定理并能靈活運用.9、B【解析】

根據(jù)乘法分配律和有理數(shù)的混合運算法則可以解答本題.【詳解】原式=-999×(52+49-1)=-999×100=-1.故選B.【點睛】本題考查了有理數(shù)的混合運算,解答本題的關鍵是明確有理數(shù)混合運算的計算方法.10、D【解析】試題分析:由分式有意義的條件得出x+1≠0,解得x≠﹣1.故選D.點睛:本題考查了函數(shù)中自變量的取值范圍、分式有意義的條件;由分式有意義得出不等式是解決問題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、AB=AD(答案不唯一).【解析】已知OA=OC,OB=OD,可得四邊形ABCD是平行四邊形,再根據(jù)菱形的判定定理添加鄰邊相等或對角線垂直即可判定該四邊形是菱形.所以添加條件AB=AD或BC=CD或AC⊥BD,本題答案不唯一,符合條件即可.12、1【解析】

根據(jù)一次函數(shù)圖象上的點的坐標特征,將點(0,a)代入直線方程,然后解關于a的方程即可.【詳解】∵直線y=2x+1經(jīng)過點(0,a),∴a=2×0+1,∴a=1.故答案為1.13、a+b=1.【解析】試題分析:根據(jù)作圖可知,OP為第二象限角平分線,所以P點的橫縱坐標互為相反數(shù),故a+b=1.考點:1角平分線;2平面直角坐標系.14、①②④【解析】①由a=b,得5﹣2a=5﹣2b,根據(jù)等式的性質先將式子兩邊同時乘以-2,再將等式兩邊同時加上5,等式仍成立,所以本選項正確,②由a=b,得ac=bc,根據(jù)等式的性質,等式兩邊同時乘以相同的式子,等式仍成立,所以本選項正確,③由a=b,得,根據(jù)等式的性質,等式兩邊同時除以一個不為0的數(shù)或式子,等式仍成立,因為可能為0,所以本選項不正確,④由,得3a=2b,根據(jù)等式的性質,等式兩邊同時乘以相同的式子6c,等式仍成立,所以本選項正確,⑤因為互為相反數(shù)的平方也相等,由a2=b2,得a=b,或a=-b,所以本選項錯誤,故答案為:①②④.15、(或)【解析】

利用完全平方數(shù)和算術平方根對無理數(shù)的大小進行估算,然后找出無理數(shù)即可【詳解】設無理數(shù)為,,所以x的取值在4~16之間都可,故可填【點睛】本題考查估算無理數(shù)的大小,能夠判斷出中間數(shù)的取值范圍是解題關鍵16、1.57×1【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將1570000用科學記數(shù)法表示為1.57×1.故答案為1.57×1.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.三、解答題(共8題,共72分)17、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點睛:本題主要考查圓中的計算問題,解題的關鍵在于清楚角度的轉換方式和弦長的計算方法.18、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】

(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質可求出OG、DN的長度,進而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理可求出B′D的長度進而可得出CB′的長度,再結合圖形即可得出:半圓弧與直線CD只有一個交點時d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點O作OG⊥AD于點G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當點B′在直線CD上時,如圖4所示,在Rt△AB′D中(點B′在點D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當點B′在點D右邊時,半圓交直線CD于點D、B′.∴當半圓弧與直線CD只有一個交點時,4-≤d<4或d=4+.【點睛】本題考查了相似三角形的判定與性質、矩形的性質、等邊三角形的性質、勾股定理以及切線的性質,解題的關鍵是:(2)利用相似三角形的性質求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數(shù)形結合求出d的取值范圍.19、(1);(2).【解析】

(1)根據(jù)題意和圖形,可以求得顧客選擇方式一,享受優(yōu)惠的概率;(2)根據(jù)題意可以畫出相應的樹狀圖,從而可以求得相應的概率.【詳解】解:(1)由題意可得,顧客選擇方式一,則享受優(yōu)惠的概率為:,故答案為:;(2)樹狀圖如下圖所示,則顧客享受折上折優(yōu)惠的概率是:,即顧客享受折上折優(yōu)惠的概率是.【點睛】本題考查列表法與樹狀圖法,解答本題的關鍵是明確題意,列出相應的樹狀圖,求出相應的概率.20、(1)C(1,-4).(2)證明見解析;(3)∠APB=135°,P(1,0).【解析】

(1)作CH⊥y軸于H,證明△ABO≌△BCH,根據(jù)全等三角形的性質得到BH=OA=3,CH=OB=1,求出OH,得到C點坐標;(2)證明△PBA≌△QBC,根據(jù)全等三角形的性質得到PA=CQ;(3)根據(jù)C、P,Q三點共線,得到∠BQC=135°,根據(jù)全等三角形的性質得到∠BPA=∠BQC=135°,根據(jù)等腰三角形的性質求出OP,得到P點坐標.【詳解】(1)作CH⊥y軸于H,則∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C點坐標為(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,當C、P,Q三點共線時,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P點坐標為(1,0).【點睛】本題考查的是全等三角形的判定和性質、三角形的外角的性質,掌握全等三角形的判定定理和性質定理是解題的關鍵.21、【解析】

根據(jù)分式的減法和除法可以化簡題目中的式子,然后從﹣<x<的范圍內選取一個使得原分式有意義的整數(shù)作為x的值代入即可解答本題.【詳解】解:÷(﹣x+1)====,當x=﹣2時,原式=.【點睛】本題考查分式的化簡求值、估算無理數(shù)的大小,解答本題的關鍵是明確分式化簡求值的方法.22、(1)證明見解析;(2)AC=;【解析】

(1)由DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問題;

(2)只要證明△ACD是直角三角形,∠AD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論