




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆河北省保定市博野縣中考數(shù)學(xué)全真模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.一次函數(shù)與二次函數(shù)在同一平面直角坐標(biāo)系中的圖像可能是()A. B. C. D.2.如圖,在⊙O中,弦AB=CD,AB⊥CD于點(diǎn)E,已知CE?ED=3,BE=1,則⊙O的直徑是()A.2 B. C.2 D.53.如圖,點(diǎn)A是反比例函數(shù)y=的圖象上的一點(diǎn),過(guò)點(diǎn)A作AB⊥x軸,垂足為B.點(diǎn)C為y軸上的一點(diǎn),連接AC,BC.若△ABC的面積為3,則k的值是()A.3 B.﹣3 C.6 D.﹣64.下列各類數(shù)中,與數(shù)軸上的點(diǎn)存在一一對(duì)應(yīng)關(guān)系的是()A.有理數(shù)B.實(shí)數(shù)C.分?jǐn)?shù)D.整數(shù)5.魏晉時(shí)期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù).為計(jì)算圓周率建立了嚴(yán)密的理論和完善的算法.作圓內(nèi)接正多邊形,當(dāng)正多邊形的邊數(shù)不斷增加時(shí),其周長(zhǎng)就無(wú)限接近圓的周長(zhǎng),進(jìn)而可用來(lái)求得較為精確的圓周率.祖沖之在劉徽的基礎(chǔ)上繼續(xù)努力,當(dāng)正多邊形的邊數(shù)增加24576時(shí),得到了精確到小數(shù)點(diǎn)后七位的圓周率,這一成就在當(dāng)時(shí)是領(lǐng)先其他國(guó)家一千多年,如圖,依據(jù)“割圓術(shù)”,由圓內(nèi)接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π6.某校舉行“漢字聽(tīng)寫(xiě)比賽”,5個(gè)班級(jí)代表隊(duì)的正確答題數(shù)如圖.這5個(gè)正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,157.以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過(guò)第三象限,則實(shí)數(shù)b的取值范圍是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤28.計(jì)算的值為()A. B.-4 C. D.-29.的算術(shù)平方根是()A.4 B.±4 C.2 D.±210.若一個(gè)正比例函數(shù)的圖象經(jīng)過(guò)A(3,﹣6),B(m,﹣4)兩點(diǎn),則m的值為()A.2 B.8 C.﹣2 D.﹣8二、填空題(共7小題,每小題3分,滿分21分)11.如圖,⊙O的半徑為1cm,正六邊形ABCDEF內(nèi)接于⊙O,則圖中陰影部分面積為_(kāi)____cm1.(結(jié)果保留π)12.為了了解貫徹執(zhí)行國(guó)家提倡的“陽(yáng)光體育運(yùn)動(dòng)”的實(shí)施情況,將某班50名同學(xué)一周的體育鍛煉情況繪制成了如圖所示的條形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的數(shù)據(jù),該班50名同學(xué)一周參加體育鍛煉時(shí)間的中位數(shù)與眾數(shù)之和為_(kāi)____.13.如圖,身高是1.6m的某同學(xué)直立于旗桿影子的頂端處,測(cè)得同一時(shí)刻該同學(xué)和旗桿的影子長(zhǎng)分別為1.2m和9m.則旗桿的高度為_(kāi)_______m.14.計(jì)算:(﹣2a3)2=_____.15.若⊙O所在平面內(nèi)一點(diǎn)P到⊙O的最大距離為6,最小距離為2,則⊙O的半徑為_(kāi)____.16.如圖,正方形ABCD的邊長(zhǎng)為,點(diǎn)E在對(duì)角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為點(diǎn)F,則EF的長(zhǎng)是__________.17.如圖,直線y=kx與雙曲線y=(x>0)交于點(diǎn)A(1,a),則k=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在矩形ABCD中,AB=1DA,以點(diǎn)A為圓心,AB為半徑的圓弧交DC于點(diǎn)E,交AD的延長(zhǎng)線于點(diǎn)F,設(shè)DA=1.求線段EC的長(zhǎng);求圖中陰影部分的面積.19.(5分)如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長(zhǎng)2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過(guò)公路路面的中心線時(shí)照明效果最好.此時(shí),路燈的燈柱AB的高應(yīng)該設(shè)計(jì)為多少米.(結(jié)果保留根號(hào))20.(8分)如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng),交AD于E,交BA的延長(zhǎng)線點(diǎn)F.問(wèn):圖中△APD與哪個(gè)三角形全等?并說(shuō)明理由;求證:△APE∽△FPA;猜想:線段PC,PE,PF之間存在什么關(guān)系?并說(shuō)明理由.21.(10分)如圖所示,平行四邊形形ABCD中,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).(1)求證:四邊形BEDF是平行四邊形;(2)請(qǐng)?zhí)砑右粋€(gè)條件使四邊形BEDF為菱形.22.(10分)如圖1,△ABC中,AB=AC=6,BC=4,點(diǎn)D、E分別在邊AB、AC上,且AD=AE=1,連接DE、CD,點(diǎn)M、N、P分別是線段DE、BC、CD的中點(diǎn),連接MP、PN、MN.(1)求證:△PMN是等腰三角形;(2)將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),①如圖2,當(dāng)點(diǎn)D、E分別在邊AC兩側(cè)時(shí),求證:△PMN是等腰三角形;②當(dāng)△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到第一次點(diǎn)D、E、C在一條直線上時(shí),請(qǐng)直接寫(xiě)出此時(shí)BD的長(zhǎng).23.(12分)如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高為DE,在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為64°,在斜坡上的點(diǎn)D處測(cè)得樓頂B的仰角為45°,其中A、C、E在同一直線上.求斜坡CD的高度DE;求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).24.(14分)小李在學(xué)習(xí)了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請(qǐng)你幫他完成如下問(wèn)題:他認(rèn)為該定理有逆定理:“如果一個(gè)三角形某條邊上的中線等于該邊長(zhǎng)的一半,那么這個(gè)三角形是直角三角形”應(yīng)該成立.即如圖①,在中,是邊上的中線,若,求證:.如圖②,已知矩形,如果在矩形外存在一點(diǎn),使得,求證:.(可以直接用第(1)問(wèn)的結(jié)論)在第(2)問(wèn)的條件下,如果恰好是等邊三角形,請(qǐng)求出此時(shí)矩形的兩條鄰邊與的數(shù)量關(guān)系.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
本題可先由一次函數(shù)y=ax+c圖象得到字母系數(shù)的正負(fù),再與二次函數(shù)y=ax2+bx+c的圖象相比較看是否一致.【詳解】A、一次函數(shù)y=ax+c與y軸交點(diǎn)應(yīng)為(0,c),二次函數(shù)y=ax2+bx+c與y軸交點(diǎn)也應(yīng)為(0,c),圖象不符合,故本選項(xiàng)錯(cuò)誤;B、由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項(xiàng)錯(cuò)誤;C、由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項(xiàng)錯(cuò)誤;D、由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點(diǎn)相同,故本選項(xiàng)正確.故選D.【點(diǎn)睛】本題考查拋物線和直線的性質(zhì),用假設(shè)法來(lái)搞定這種數(shù)形結(jié)合題是一種很好的方法.2、C【解析】
作OH⊥AB于H,OG⊥CD于G,連接OA,根據(jù)相交弦定理求出EA,根據(jù)題意求出CD,根據(jù)垂徑定理、勾股定理計(jì)算即可.【詳解】解:作OH⊥AB于H,OG⊥CD于G,連接OA,由相交弦定理得,CE?ED=EA?BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE?ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由題意得,四邊形HEGO是矩形,∴OH=EG=1,由勾股定理得,OA=,∴⊙O的直徑為,故選C.【點(diǎn)睛】此題考查了相交弦定理、垂徑定理、勾股定理、矩形的判定與性質(zhì);根據(jù)圖形作出相應(yīng)的輔助線是解本題的關(guān)鍵.3、D【解析】試題分析:連結(jié)OA,如圖,∵AB⊥x軸,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故選D.考點(diǎn):反比例函數(shù)系數(shù)k的幾何意義.4、B【解析】
根據(jù)實(shí)數(shù)與數(shù)軸上的點(diǎn)存在一一對(duì)應(yīng)關(guān)系解答.【詳解】實(shí)數(shù)與數(shù)軸上的點(diǎn)存在一一對(duì)應(yīng)關(guān)系,故選:B.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸上點(diǎn)的關(guān)系,每一個(gè)實(shí)數(shù)都可以用數(shù)軸上唯一的點(diǎn)來(lái)表示,反過(guò)來(lái),數(shù)軸上的每個(gè)點(diǎn)都表示一個(gè)唯一的實(shí)數(shù),也就是說(shuō)實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng).5、C【解析】
連接OC、OD,根據(jù)正六邊形的性質(zhì)得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據(jù)題意計(jì)算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長(zhǎng):圓的直徑=6CD:2CD=3,故選:C.【點(diǎn)睛】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計(jì)算公式是解題的關(guān)鍵.6、D【解析】
將五個(gè)答題數(shù),從小打到排列,5個(gè)數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個(gè)答題數(shù)排序?yàn)椋?0,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點(diǎn)睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.7、A【解析】∵二次函數(shù)y=x2-2(b-2)x+b2-1的圖象不經(jīng)過(guò)第三象限,a=1>0,∴Δ≤0或拋物線與x軸的交點(diǎn)的橫坐標(biāo)均大于等于0.當(dāng)Δ≤0時(shí),[-2(b-2)]2-4(b2-1)≤0,解得b≥.當(dāng)拋物線與x軸的交點(diǎn)的橫坐標(biāo)均大于等于0時(shí),設(shè)拋物線與x軸的交點(diǎn)的橫坐標(biāo)分別為x1,x2,則x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,無(wú)解,∴此種情況不存在.∴b≥.8、C【解析】
根據(jù)二次根式的運(yùn)算法則即可求出答案.【詳解】原式=-3=-2,故選C.【點(diǎn)睛】本題考查二次根式的運(yùn)算,解題的關(guān)鍵是熟練運(yùn)用二次根式的運(yùn)算法則,本題屬于基礎(chǔ)題型.9、C【解析】
先求出的值,然后再利用算術(shù)平方根定義計(jì)算即可得到結(jié)果.【詳解】=4,4的算術(shù)平方根是2,所以的算術(shù)平方根是2,故選C.【點(diǎn)睛】本題考查了算術(shù)平方根,熟練掌握算術(shù)平方根的定義是解本題的關(guān)鍵.10、A【解析】試題分析:設(shè)正比例函數(shù)解析式為:y=kx,將點(diǎn)A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函數(shù)解析式為:y=﹣2x,將B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故選A.考點(diǎn):一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題分析:根據(jù)圖形分析可得求圖中陰影部分面積實(shí)為求扇形部分面積,將原圖陰影部分面積轉(zhuǎn)化為扇形面積求解即可.試題解析:如圖所示:連接BO,CO,∵正六邊形ABCDEF內(nèi)接于⊙O,∴AB=BC=CO=1,∠ABC=110°,△OBC是等邊三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴圖中陰影部分面積為:S扇形OBC=.考點(diǎn):正多邊形和圓.12、17【解析】∵8是出現(xiàn)次數(shù)最多的,∴眾數(shù)是8,∵這組數(shù)據(jù)從小到大的順序排列,處于中間位置的兩個(gè)數(shù)都是9,∴中位數(shù)是9,所以中位數(shù)與眾數(shù)之和為8+9=17.故答案為17小時(shí).13、1【解析】試題分析:利用相似三角形的相似比,列出方程,通過(guò)解方程求出旗桿的高度即可.解:∵同一時(shí)刻物高與影長(zhǎng)成正比例.設(shè)旗桿的高是xm.∴1.6:1.2=x:9∴x=1.即旗桿的高是1米.故答案為1.考點(diǎn):相似三角形的應(yīng)用.14、4a1.【解析】
根據(jù)積的乘方運(yùn)算法則進(jìn)行運(yùn)算即可.【詳解】原式故答案為【點(diǎn)睛】考查積的乘方,掌握運(yùn)算法則是解題的關(guān)鍵.15、2或1【解析】
點(diǎn)P可能在圓內(nèi).也可能在圓外,因而分兩種情況進(jìn)行討論.【詳解】解:當(dāng)這點(diǎn)在圓外時(shí),則這個(gè)圓的半徑是(6-2)÷2=2;當(dāng)點(diǎn)在圓內(nèi)時(shí),則這個(gè)圓的半徑是(6+2)÷2=1.故答案為2或1.【點(diǎn)睛】此題主要考查點(diǎn)與圓的位置關(guān)系,解題的關(guān)鍵是注意此題應(yīng)分為兩種情況來(lái)解決.16、2【解析】
設(shè)EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【詳解】設(shè)EF=x,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
∴BD=AB=4+4,EF=BF=x,
∴BE=x,
∵∠BAE=22.5°,
∴∠DAE=90°-22.5°=67.5°,
∴∠AED=180°-45°-67.5°=67.5°,
∴∠AED=∠DAE,
∴AD=ED,
∴BD=BE+ED=x+4+2=4+4,
解得:x=2,
即EF=2.17、1【解析】解:∵直線y=kx與雙曲線y=(x>0)交于點(diǎn)A(1,a),∴a=1,k=1.故答案為1.三、解答題(共7小題,滿分69分)18、(1);(1).【解析】
(1)根據(jù)矩形的性質(zhì)得出AB=AE=4,進(jìn)而利用勾股定理得出DE的長(zhǎng),即可得出答案;(1)利用銳角三角函數(shù)關(guān)系得出∠DAE=60°,進(jìn)而求出圖中陰影部分的面積為:,求出即可.【詳解】解:(1)∵在矩形ABCD中,AB=1DA,DA=1,∴AB=AE=4,∴DE=,∴EC=CD-DE=4-1;(1)∵sin∠DEA=,∴∠DEA=30°,∴∠EAB=30°,∴圖中陰影部分的面積為:S扇形FAB-S△DAE-S扇形EAB=.【點(diǎn)睛】此題主要考查了扇形的面積計(jì)算以及勾股定理和銳角三角函數(shù)關(guān)系等知識(shí),根據(jù)已知得出DE的長(zhǎng)是解題關(guān)鍵.19、(10-4)米【解析】
延長(zhǎng)OC,AB交于點(diǎn)P,△PCB∽△PAO,根據(jù)相似三角形對(duì)應(yīng)邊比例相等的性質(zhì)即可解題.【詳解】解:如圖,延長(zhǎng)OC,AB交于點(diǎn)P.∵∠ABC=120°,∴∠PBC=60°,∵∠OCB=∠A=90°,∴∠P=30°,∵AD=20米,∴OA=AD=10米,∵BC=2米,∴在Rt△CPB中,PC=BC?tan60°=米,PB=2BC=4米,∵∠P=∠P,∠PCB=∠A=90°,∴△PCB∽△PAO,∴,∴PA===米,∴AB=PA﹣PB=()米.答:路燈的燈柱AB高應(yīng)該設(shè)計(jì)為()米.20、(1)△CPD.理由參見(jiàn)解析;(2)證明參見(jiàn)解析;(3)PC2=PE?PF.理由參見(jiàn)解析.【解析】
(1)根據(jù)菱形的性質(zhì),利用SAS來(lái)判定兩三角形全等;(2)根據(jù)第一問(wèn)的全等三角形結(jié)論及已知,利用兩組角相等則兩三角形相似來(lái)判定即可;(3)根據(jù)相似三角形的對(duì)應(yīng)邊成比例及全等三角形的對(duì)應(yīng)邊相等即可得到結(jié)論.【詳解】解:(1)△APD≌△CPD.理由:∵四邊形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(兩組角相等則兩三角形相似).(3)猜想:PC2=PE?PF.理由:∵△APE∽△FPA,∴即PA2=PE?PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE?PF.【點(diǎn)睛】本題考查1.相似三角形的判定與性質(zhì);2.全等三角形的判定;3.菱形的性質(zhì),綜合性較強(qiáng).21、見(jiàn)解析【解析】
(1)根據(jù)平行四邊形的性質(zhì)可得AB∥DC,OB=OD,由平行線的性質(zhì)可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性質(zhì)可得EO=FO,根據(jù)對(duì)角線互相平分的四邊形是平行四邊形即可判定四邊形BEDF是平行四邊形;(2)添加EF⊥BD(本題添加的條件不唯一),根據(jù)對(duì)角線互相垂直的平行四邊形為菱形即可判定平行四邊形BEDF為菱形.【詳解】(1)∵四邊形ABCD是平行四邊形,O是BD的中點(diǎn),∴AB∥DC,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四邊形BEDF是平行四邊形;(2)EF⊥BD.∵四邊形BEDF是平行四邊形,∵EF⊥BD,∴平行四邊形BEDF是菱形.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)與判定、菱形的判定,熟知平行四邊形的性質(zhì)與判定及菱形的判定方法是解決問(wèn)題的關(guān)鍵.22、(1)見(jiàn)解析;(2)①見(jiàn)解析;②279【解析】
(1)利用三角形的中位線得出PM=CE,PN=BD,進(jìn)而判斷出BD=CE,即可得出結(jié)論P(yáng)M=PN;(2)①先證明△ABD≌△ACE,得BD=CE,同理根據(jù)三角形中位線定理可得結(jié)論;②如圖4,連接AM,計(jì)算AN和DE、EM的長(zhǎng),如圖3,證明△ABD≌△CAE,得BD=CE,根據(jù)勾股定理計(jì)算CM的長(zhǎng),可得結(jié)論【詳解】(1)如圖1,∵點(diǎn)N,P是BC,CD的中點(diǎn),∴PN∥BD,PN=BD,∵點(diǎn)P,M是CD,DE的中點(diǎn),∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∴△PMN是等腰三角形;(2)①如圖2,∵∠DAE=∠BAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∵點(diǎn)M、N、P分別是線段DE、BC、CD的中點(diǎn),∴PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形;②當(dāng)△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到第一次點(diǎn)D、E、C在一條直線上時(shí),如圖3,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△CAE,∴BD=CE,如圖4,連接AM,∵M(jìn)是DE的中點(diǎn),N是BC的中點(diǎn),AB=AC,∴A、M、N共線,且AN⊥BC,由勾股定理得:AN==4,∵AD=AE=1,AB=AC=6,∴=,∠DAE=∠BAC,∴△ADE∽△AEC,∴,∴,∴AM=,DE=,∴EM=,如圖3,Rt△ACM中,CM===,∴BD=CE=CM+EM=.【點(diǎn)睛】此題是三角形的綜合題,主要考查了三角形的中位線定理,等腰三角形的判定和性質(zhì),全等和相似三角形的判定和性質(zhì),直角三角形的性質(zhì),解(1)的關(guān)鍵是判斷出PM=12CE,PN=123、(1)斜坡CD的高度DE是5米;(2)大樓AB的高度是34米
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025咖啡供貨合同模板
- 2017年設(shè)計(jì)合同范本
- 企業(yè)現(xiàn)金贈(zèng)與合同范本
- 2025授權(quán)銷售合同范本
- 2025股票配資合同樣本
- 汽車靠背廣告合同范本
- 盒裝水果售賣合同范本
- 展會(huì)合展合同范本
- 設(shè)備供應(yīng)合同范本
- 德國(guó)賣房合同范本
- T/GIEHA 013-2019商用廚房油煙管道系統(tǒng)清洗規(guī)范
- 團(tuán)體標(biāo)準(zhǔn)解讀及臨床應(yīng)用-成人經(jīng)鼻高流量濕化氧療技術(shù)規(guī)范2025
- 舊房拆除重建協(xié)議書(shū)
- 2025質(zhì)量工程師筆試題庫(kù)及答案
- 期貨保密協(xié)議書(shū)
- 船舶運(yùn)輸公司水上船舶運(yùn)輸安全應(yīng)急預(yù)案
- 2025安全生產(chǎn)法律法規(guī)專題知識(shí)培訓(xùn)
- 代建管理工作程序
- 血透護(hù)理文書(shū)書(shū)寫(xiě)規(guī)范
- 手術(shù)室安全細(xì)節(jié)管理
- 繼發(fā)性顱腦損傷的護(hù)理
評(píng)論
0/150
提交評(píng)論