人教版數(shù)學(xué)九年級上冊23.2.1中心對稱 課件_第1頁
人教版數(shù)學(xué)九年級上冊23.2.1中心對稱 課件_第2頁
人教版數(shù)學(xué)九年級上冊23.2.1中心對稱 課件_第3頁
人教版數(shù)學(xué)九年級上冊23.2.1中心對稱 課件_第4頁
人教版數(shù)學(xué)九年級上冊23.2.1中心對稱 課件_第5頁
已閱讀5頁,還剩26頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

(人教版)數(shù)學(xué)

九年級上第二十三章旋轉(zhuǎn)

23.2中心對稱23.2.1

中心對稱目錄課后小結(jié)隨堂練習(xí)知識講解情境導(dǎo)入學(xué)習(xí)目標(biāo)13524學(xué)習(xí)目標(biāo)1.理解中心對稱的定義,掌握中心對稱的性質(zhì).(重點)2.培養(yǎng)觀察、分析和歸納能力,感受中心對稱美,發(fā)掘作圖能力.(難點)情境導(dǎo)入

剪紙,又叫刻紙,是中國漢族最古老的民間藝術(shù)之一,它的歷史可追溯到公元6世紀(jì).如圖所示的剪紙中的兩個金魚之間有什么關(guān)系?

知識講解知識點1

中心對稱的定義及性質(zhì)

如果把一個圖形(如△ABO)繞定點O旋轉(zhuǎn)180°,它能夠與另一個圖形(如△CDO)重合,那么就說這兩個圖形△ABO與△CDO關(guān)于點O對稱或中心對稱,點O就是對稱中心.知識講解知識點1

中心對稱的定義及性質(zhì)1.中心對稱是一種特殊的旋轉(zhuǎn),其旋轉(zhuǎn)角是180°.2.中心對稱是兩個圖形之間一種特殊的位置關(guān)系.3.成中心對稱是兩個圖形,只有一個對稱中心,對稱中心可能在圖形的外部、內(nèi)部或圖形上,對稱點一定在對稱中心兩側(cè)或與對稱中心重合.知識講解知識點1

中心對稱的定義及性質(zhì)中心對稱的性質(zhì):1.成中心對稱的兩個圖形中,對應(yīng)點所連線段經(jīng)過對稱中心,且被對稱中心平分.(即對稱點與對稱中心三點共線)2.中心對稱的兩個圖形是全等形.知識講解知識點1

中心對稱的定義及性質(zhì)【例1】如下圖所示的四組圖形中,左邊圖形與右邊圖形成中心對稱的有(

)A.1組

B.2組C.3組

D.4組知識講解知識點1

中心對稱的定義及性質(zhì)解析:將選項中左邊圖形沿著某一點旋轉(zhuǎn)180°能與右邊圖形重合的是(1)(2)(3),所以(1)(2)(3)中左邊圖形與右邊圖形成中心對稱,共3組,故選C.知識講解知識點1

中心對稱的定義及性質(zhì)【例1】如下圖所示的四組圖形中,左邊圖形與右邊圖形成中心對稱的有(

)A.1組

B.2組C.3組

D.4組C知識講解知識點1

中心對稱的定義及性質(zhì)【例2】如圖,已知△AOB與△DOC成中心對稱,△AOB的面積是12,AB=3,則△DOC中CD邊上的高是(

)A.3

B.6

C.8

D.12C解析:設(shè)AB邊上的高為h,因為△AOB的面積是12,AB=3,所以×AB×h=12,所以h=8,又因為△AOB與△DOC成中心對稱,所以△DOC≌△AOB,所以△DOC中CD邊上的高是8.

知識講解知識點2

中心對稱作圖

如圖,三角尺的一個頂點是O,以點O為中心旋轉(zhuǎn)三角尺,可以畫出關(guān)于點O中心對稱的兩個三角形:

第一步,畫出△ABC;

第二步,以三角尺的一個頂點O為中心,把三角板旋轉(zhuǎn)180°,畫出△A'BC';

第三步,移開三角尺.知識講解知識點2

中心對稱作圖確定成中心對稱的兩個圖形的對稱中心的方法:①連接任意一對對稱點,取這條線段的中點,這個中點就是對稱中心;②連接任意兩對對稱點,兩條線段的交點就是對稱中心.知識講解知識點2

中心對稱作圖【例3】如圖,已知△ABC和△A′B′C′成中心對稱,畫出它們的對稱中心.知識講解知識點2

中心對稱作圖【例3】如圖,已知△ABC和△A′B′C′成中心對稱,畫出它們的對稱中心.解法一:根據(jù)觀察,B、B′及C、C′是兩組對稱點,連接BB′、CC′,BB′、CC′相交于點O,則O為對稱中心.如圖.知識講解知識點2

中心對稱作圖【例3】如圖,已知△ABC和△A′B′C′成中心對稱,畫出它們的對稱中心.解法二:B、B′是一對對稱點,連接BB′,找出BB′的中點O,則點O即為對稱中心.如圖.知識講解知識點2

中心對稱作圖【例4】如圖,四邊形ABCD繞D點旋轉(zhuǎn)180°,請作出旋轉(zhuǎn)后的圖案,寫出作法并回答.(1)這兩個圖形是否成中心對稱?如果是,對稱中心是哪一點?如果不是,請說明理由.(2)如果是中心對稱,那么A、B、C、D關(guān)于中心的對稱點是哪些點?知識講解知識點2

中心對稱作圖【例4】如圖,四邊形ABCD繞D點旋轉(zhuǎn)180°,請作出旋轉(zhuǎn)后的圖案,寫出作法并回答.解:作法:①延長AD,并且使得DA′=AD;②同樣可得:BD=B′D,CD=C′D;③連接A′B′、B′C′、C′D,則四邊形A′B′C′D為所求的四邊形,如圖所示.知識講解知識點2

中心對稱作圖(1)這兩個圖形是否成中心對稱?如果是,對稱中心是哪一點?如果不是,請說明理由.(2)如果是中心對稱,那么A、B、C、D關(guān)于中心的對稱點是哪些點?(1)這兩個圖形成中心對稱,對稱中心是點D.(2)A、B、C、D關(guān)于中心的對稱點為A′、B′、C′和D.隨堂練習(xí)1.下列五組圖形中,左邊的圖形與右邊的圖形成中心對稱的有(

)A.1組

B.2組

C.3組

D.4組B隨堂練習(xí)2.如圖,△ABO與△CDO關(guān)于O點中心對稱,點E,F(xiàn)在線段AC上,且AF=CE,求證:FD=BE.證明:∵△ABO與△CDO關(guān)于O點中心對稱,∴BO=DO,AO=CO,∵AF=CE,∴AO-AF=CO-CE,∴FO=EO,在△FOD和△EOB中,

∴△FOD≌△EOB(SAS),

∴DF=BE.隨堂練習(xí)3.如圖,已知AD是△ABC的中線,畫出以點D為對稱中心,與△ABD成中心對稱的三角形.分析:因為D是對稱中心且AD是△ABC的中線,所以C、B為一對對應(yīng)點,因此,只要再畫出A關(guān)于D的對應(yīng)點即可.隨堂練習(xí)3.如圖,已知AD是△ABC的中線,畫出以點D為對稱中心,與△ABC成中心對稱的三角形.解:(1)延長AD,且使AD=DA′,易知C點關(guān)于D的對稱點是B(C′),B點關(guān)于D的對稱點為C(B′).(2)連接A′B′、A′C′,則△A′B′C′為所求作的三角形,如圖所示.隨堂練習(xí)4.如圖,△ABM與△ACM關(guān)于直線AF成軸對稱,△ABE與△DCE關(guān)于點E成中心對稱,點E、D、M都在線段AF上,BM的延長線交CF于點P.(1)求證:AC=CD;(2)若∠BAC=2∠MPC,請你判斷∠F與∠MCD的數(shù)量關(guān)系,并說明理由.隨堂練習(xí)4.如圖,△ABM與△ACM關(guān)于直線AF成軸對稱,△ABE與△DCE關(guān)于點E成中心對稱,點E、D、M都在線段AF上,BM的延長線交CF于點P.(1)求證:AC=CD;(1)證明:∵△ABM與△ACM關(guān)于直線AF成軸對稱,∴△ABM≌△ACM,∴AB=AC,又∵△ABE與△DCE關(guān)于點E成中心對稱,∴△ABE≌△DCE,∴AB=CD,∴AC=CD.隨堂練習(xí)4.如圖,△ABM與△ACM關(guān)于直線AF成軸對稱,△ABE與△DCE關(guān)于點E成中心對稱,點E、D、M都在線段AF上,BM的延長線交CF于點P.(2)若∠BAC=2∠MPC,請你判斷∠F與∠MCD的數(shù)量關(guān)系,并說明理由.(2)解:∠F=∠MCD.理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,隨堂練習(xí)4.如圖,△ABM與△ACM關(guān)于直線AF成軸對稱,△ABE與△DCE關(guān)于點E成中心對稱,點E、D、M都在線段AF上,BM的延長線交CF于點P.(2)若∠BAC=2∠MPC,請你判斷∠F與∠MCD的數(shù)量關(guān)系,并說明理由.∵∠BAC=2∠MPC,∠BMA=∠PMF,∴設(shè)∠MPC=α,則∠BAE=∠CAE=∠CDE=α,設(shè)∠BMA=β,則∠PMF=∠CMA=β,隨堂練習(xí)4.如圖,△ABM與△ACM關(guān)于直線AF成軸對稱,△ABE與△DCE關(guān)于點E成中心對稱,點E、D、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論