復(fù)變函數(shù)與積分變換 課件 第五章留數(shù)及其應(yīng)用1_第1頁
復(fù)變函數(shù)與積分變換 課件 第五章留數(shù)及其應(yīng)用1_第2頁
復(fù)變函數(shù)與積分變換 課件 第五章留數(shù)及其應(yīng)用1_第3頁
復(fù)變函數(shù)與積分變換 課件 第五章留數(shù)及其應(yīng)用1_第4頁
復(fù)變函數(shù)與積分變換 課件 第五章留數(shù)及其應(yīng)用1_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第五章

留數(shù)及其應(yīng)用第五章留數(shù)及其應(yīng)用1、孤立奇點(diǎn)2、留數(shù)3、留數(shù)在計算定積分中的應(yīng)用§1孤立奇點(diǎn)1、孤立奇點(diǎn)的定義定義1

.

)

(

,

0

,

)

(

0

0

0

0

的孤立奇點(diǎn)

則稱

內(nèi)解析

的某個去心鄰域

但在

處不解析

z

f

z

z

z

z

z

z

f

d

<

-

<

例如孤立奇點(diǎn)奇點(diǎn)未必是孤立的.

若函數(shù)的奇點(diǎn)個數(shù)有限,則每一奇點(diǎn)都是孤立奇點(diǎn).2、孤立奇點(diǎn)的分類注2.1可去奇點(diǎn):展式中不含z-z0負(fù)冪項(xiàng),即特點(diǎn)?“可去”一詞的解釋?和函數(shù)(從新定義)因?yàn)?.2極點(diǎn):展式中僅含有有限多個z-z0負(fù)冪項(xiàng),即特點(diǎn)?2.3本性奇點(diǎn):展式中含有無窮多個z-z0負(fù)冪項(xiàng),

特點(diǎn)?3、函數(shù)在孤立奇點(diǎn)的性質(zhì)若z0為

f(z)的孤立奇點(diǎn),則下列條件等價:性質(zhì)1(可去奇點(diǎn)的判定定理)證:只須證顯然由極限定義即可其中由于性質(zhì)2(m級極點(diǎn)的特征)若為f(z)

的孤立奇點(diǎn),則下列條件等價:證:去心鄰域則例如:為f(z)的一個4級極點(diǎn),為f(z)的單極點(diǎn).注意:在判斷孤立奇點(diǎn)類型時,不要一看到函數(shù)的表面形式就急于作出結(jié)論.例如

利用洛朗展式容易知道,z=0分別是它們的單極點(diǎn),可去奇點(diǎn),二級極點(diǎn).性質(zhì)3

若z0為f(z)的孤立奇點(diǎn),則z0為f(z)的極點(diǎn)的充要條件是

在判斷函數(shù)的極點(diǎn)時,請比較性質(zhì)2和性質(zhì)3.4、零點(diǎn)與極點(diǎn)的關(guān)系性質(zhì)4證明:先證明必要性.必要性證畢.充分性請自己完成.例如:結(jié)論:一個不恒為零的解析函數(shù)的零點(diǎn)是孤立的.性質(zhì)5分析例如,15性質(zhì)6

(極點(diǎn)的運(yùn)算性質(zhì))性質(zhì)7

z0為

f(z)的本性奇點(diǎn)注:在求復(fù)變函數(shù)的極限時,也有同實(shí)函數(shù)類似的羅必塔法則.由性質(zhì)1和性質(zhì)3,得性質(zhì)8

(Weierstrass)定理例如:本性奇點(diǎn)答:解:又記5、函數(shù)在無窮遠(yuǎn)點(diǎn)的性態(tài)23

定義4洛朗展式判別法則25

極限判別法例如:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論