




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題18一元一次不等式組【思維導(dǎo)圖】◎考點題型1一元一次不等式組的定義定義:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組.如,等都是一元一次不等式組.例.(2021·全國·九年級專題練習(xí))下列不等式組是一元一次不等式組的是(
)A. B. C. D.變式1.(2019春·浙江臺州·七年級臺州市書生中學(xué)階段練習(xí))下列屬于一元一次不等式組的是(
)A. B. C. D.變式2.(2019春·八年級單元測試)“與5的和是正數(shù)且的一半不大于3”用不等式組表示,正確的是A. B. C. D.變式3.(2020春·七年級統(tǒng)考課時練習(xí))有下列不等式組:①;②;③;④;⑤;⑥.其中是一元一次不等式組的有()A.1個 B.2個 C.3個 D.4個◎考點題型2求不等式組的解集1、一元一次不等式組的解集:一般地,幾個一元一次不等式解集的公共部分,叫做它們所組成的不等式組的解集。2、不等式組解集的確定方法:【注意】1.在求不等式組的解集的過程中,通常是利用數(shù)軸來確定不等式組的解集。2.利用數(shù)軸表示不等式組解集時,要把幾個不等式的解集都表示出來,不能僅畫公共部分。3、解一元一次不等式組的一般步驟:1.求出不等式組中各不等式的解集2.將各不等式的解決在數(shù)軸上表示出來。3.在數(shù)軸上找出各不等式解集的公共部分,這個公共部分就是不等式組的解集。例.(2023·廣東·一模)不等式組的解集是(
)A. B. C. D.變式1.(2023春·廣東深圳·八年級??茧A段練習(xí))已知不等式組,那么x的取值范圍在數(shù)軸上可表示為()A. B.C. D.變式2.(2023·廣東江門·江門市華僑中學(xué)??家荒#┎坏仁浇M的解集為(
)A. B. C. D.變式3.(2022·遼寧沈陽·沈陽市外國語學(xué)校??寄M預(yù)測)不等式組的解集在數(shù)軸上表示正確的是()A. B.C. D.◎考點題型3求特殊不等式組例.(2023春·七年級課時練習(xí))不等式組的解集中任何x的值均在2≤≤5的范圍內(nèi),則a的取值范圍是(
)A.≥2 B.2≤≤4 C.≤4 D.≥2且≠4變式1.(2018春·河南許昌·七年級統(tǒng)考期末)若關(guān)于x的不等式組式的整數(shù)解為x=1和x=2,則滿足這個不等式組的整數(shù)a,b組成的有序數(shù)對(a,b)共有(
)對A.0 B.1 C.3 D.2變式2.(2023春·全國·八年級階段練習(xí))對非負實數(shù)“四舍五入”到個位的值記為,即:當(dāng)為非負整數(shù)時,如果,則.反之,當(dāng)為非負整數(shù)時,如果時,則,如,,,,…若關(guān)于的不等式組的整數(shù)解恰有個,則a的范圍()A.1.5≤a<2.5 B.0.5<a≤1.5 C.1.5<a≤2.5 D.0.5≤a<1.5變式3.(2023春·七年級課時練習(xí))下列說法中,①若m>n,則ma2>na2;②x>4是不等式8﹣2x<0的解集;③不等式兩邊乘(或除以)同一個數(shù),不等號的方向不變;④是方程x﹣2y=3的唯一解;⑤不等式組無解.正確的有(
)A.0個 B.1個 C.2個 D.3個◎考點題型4求一元一次不等式組的整數(shù)解例.(2023秋·重慶沙坪壩·八年級重慶一中??计谀┤絷P(guān)于x的不等式組有且僅有四個整數(shù)解,且關(guān)于y的一元一次方程的解為正整數(shù),則符合條件的所有整數(shù)m的和為(
)A.-2 B.5 C.9 D.10變式1.(2023·全國·九年級專題練習(xí))滿足不等式組的整數(shù)解的個數(shù)是(
)A.5 B.4 C.3 D.無數(shù)變式2.(2021春·云南昆明·七年級校考期中)若關(guān)于x的不等式組的整數(shù)解只有3個,則a的取值范圍是(
)A. B. C. D.變式3.(2023春·七年級課時練習(xí))已知關(guān)于x的不等式組的所有整數(shù)解的和為,滿足條件的所有整數(shù)m的和是(
)A.13 B.-15 C.-2 D.0◎考點題型5由不等式組的解集求參數(shù)例.(2023春·七年級課時練習(xí))若不等式組的解是,則取值范圍是(
)A. B. C. D.變式1.(2023春·七年級課時練習(xí))若關(guān)于的不等式的正整數(shù)解是1,2,3,則的取值范圍是(
)A. B. C. D.變式2.(2023春·七年級課時練習(xí))若不等式組的解為,則下列各式正確的是()A. B. C. D.變式3.(2023春·四川成都·九年級成都嘉祥外國語學(xué)校??奸_學(xué)考試)若關(guān)于x的一元一次不等式組的解集為x>2,則m的取值范圍是(
)A.m>1 B.m≤1 C.m<1 D.m≥1◎考點題型6由不等式組解集的情求參數(shù)例.(2023春·全國·八年級專題練習(xí))已知關(guān)于x的不等式組的整數(shù)解共有3個,則a的取值范圍是(
)A. B. C. D.變式1.(2022春·山東泰安·八年級統(tǒng)考期中)若不等式組無解,則的取值范圍是(
)A. B. C. D.變式2.(2022春·七年級單元測試)已知關(guān)于的不等式組有解,則的取值范圍是(
)A. B. C. D.變式3.(2022春·廣西百色·七年級統(tǒng)考期末)若不等式組有實數(shù)解,則實數(shù)m的取值范圍是()A.m≤ B.m< C.m> D.m≥◎考點題型7不等式組和方程組結(jié)合的問題例.(2022春·內(nèi)蒙古呼倫貝爾·七年級??计谀┤绻P(guān)于x、y的方程組的解為正數(shù),則a的取值范圍是(
)A. B. C. D.變式1.(2021春·福建南平·七年級統(tǒng)考期末)已知,且,則k的取值范圍為(
)A. B.C. D.變式2.(2021春·甘肅平?jīng)觥て吣昙壗y(tǒng)考期末)若在二元一次方程組中,x的值為正數(shù),y的值為負數(shù),則m的取值范圍是(
)A.m<19 B.<m<19 C.m D.19<m或m<變式3.(2021·上?!ぞ拍昙墝n}練習(xí))關(guān)于的不等式組的解集為,則、的值是(
)A. B. C. D.專題18一元一次不等式組【思維導(dǎo)圖】◎考點題型1一元一次不等式組的定義定義:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組.如,等都是一元一次不等式組.例.(2021·全國·九年級專題練習(xí))下列不等式組是一元一次不等式組的是(
)A. B. C. D.【答案】C【詳解】試題解析:根據(jù)一元一次不等式組的定義可知:選項A、B、D不是一元一次不等式組,選項C是一元一次不等式組.故選C.變式1.(2019春·浙江臺州·七年級臺州市書生中學(xué)階段練習(xí))下列屬于一元一次不等式組的是(
)A. B. C. D.【答案】D【分析】根據(jù)一元一次不等式組的概念逐一進行分析即可得.【詳解】A.,含有兩個未知數(shù),且最高為2次,故不符合題意;B.,是高為二次,故不符合題意;C.,含有兩個未知數(shù),故不符合題意;D.,是一元一次不等式組,故符合題意,故選D.【點睛】本題考查了一元一次不等式組,正確理解概念是解題的關(guān)鍵.注意一元一次不等式組的特點:①每一個不等式的兩邊都是整式;②只含1個未知數(shù);③未知數(shù)的最高次數(shù)為1次.變式2.(2019春·八年級單元測試)“與5的和是正數(shù)且的一半不大于3”用不等式組表示,正確的是A. B. C. D.【答案】A【分析】利用a與5的和是正數(shù)得出a+5>0,再利用a的一半不大于3得出不等式組.【詳解】解:用a與5的和是正數(shù)得出a+5>0,再利用a的一半不大于3,即小于等于3.由題意可得:故選A.【點睛】此題主要考查了由語言文字抽象出一元一次不等式,正確得出不等式是解題關(guān)鍵.變式3.(2020春·七年級統(tǒng)考課時練習(xí))有下列不等式組:①;②;③;④;⑤;⑥.其中是一元一次不等式組的有()A.1個 B.2個 C.3個 D.4個【答案】C【分析】根據(jù)兩個不等式中含有同一個未知數(shù)且未知數(shù)的次數(shù)是1次的,可得答案.【詳解】①是一元一次不等式組,故①正確;②是一元一次不等式組,故②正確;③是一元二次不等式組,故③錯誤;④,含有分式,不是一元一次不等式組,故④錯誤;⑤是二元一次不等式組,故⑤錯誤;⑥是一元一次不等式組,故⑥正確.故選:C.【點睛】本題考查了一元一次不等式組的定義,每個不等式中含有同一個未知數(shù)且未知數(shù)的次數(shù)是1的不等式組是一元一次不等式組.◎考點題型2求不等式組的解集1、一元一次不等式組的解集:一般地,幾個一元一次不等式解集的公共部分,叫做它們所組成的不等式組的解集。2、不等式組解集的確定方法:【注意】1.在求不等式組的解集的過程中,通常是利用數(shù)軸來確定不等式組的解集。2.利用數(shù)軸表示不等式組解集時,要把幾個不等式的解集都表示出來,不能僅畫公共部分。3、解一元一次不等式組的一般步驟:1.求出不等式組中各不等式的解集2.將各不等式的解決在數(shù)軸上表示出來。3.在數(shù)軸上找出各不等式解集的公共部分,這個公共部分就是不等式組的解集。例.(2023·廣東·一模)不等式組的解集是(
)A. B. C. D.【答案】D【分析】先求出兩個不等式的解集,然后再求出不等式組的解集即可.【詳解】解:,解不等式①得:,解不等式②得:,∴不等式組的解集為,故D正確.故選:D.【點睛】本題主要考查了不等式組的解集,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小找不到.變式1.(2023春·廣東深圳·八年級??茧A段練習(xí))已知不等式組,那么x的取值范圍在數(shù)軸上可表示為()A. B.C. D.【答案】C【分析】根據(jù)一元一次不等式的解法分別解出兩個不等式,根據(jù)不等式的解集的確定方法得到不等式組的解集.【詳解】解:,解①得,,解②得,,則不等式組的解集為,故選:C.【點睛】本題考查的是一元一次不等式組的解法,解題的關(guān)鍵是掌握確定解集的規(guī)律:同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到.變式2.(2023·廣東江門·江門市華僑中學(xué)??家荒#┎坏仁浇M的解集為(
)A. B. C. D.【答案】D【分析】分別求出每個不等式的解集,繼而可得答案.【詳解】解:由得:,由得:,則不等式組的解集為,故選:D.【點睛】本題考查了解一元一次不等式組:求解出兩個不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中間,小于小的大于大的無解”確定不等式組的解集.變式3.(2022·遼寧沈陽·沈陽市外國語學(xué)校??寄M預(yù)測)不等式組的解集在數(shù)軸上表示正確的是()A. B.C. D.【答案】A【分析】分別求出兩個不等式的解集,進而求出不等式組的解集,再在數(shù)軸上表示出不等式組的解集即可得到答案.【詳解】解:,解不等式①得:,解不等式②得:,∴不等式組的解集為,∴四個選項中只有選項A符合題意,故選A.【點睛】本題主要考查了解一元一次不等式組,在數(shù)軸上表示不等式組的解集,正確求出不等式組的解集是解題的關(guān)鍵.◎考點題型3求特殊不等式組例.(2023春·七年級課時練習(xí))不等式組的解集中任何x的值均在2≤≤5的范圍內(nèi),則a的取值范圍是(
)A.≥2 B.2≤≤4 C.≤4 D.≥2且≠4【答案】B【分析】由x-a≥0,得x≥a;由x-a≤1,得x≤a+1.再根據(jù)“小大大小中間找”可知不等式組的解集為:a≤x≤a+1;然后根據(jù)x的值均在2≤x≤5的范圍內(nèi),可得出a的取值范圍.【詳解】試題解析:,由①得:x≥a,由②得:x≤1+a,∴不等式的解集是a≤x≤1+a,∵不等式組的解集中x的值均在2≤x≤5的范圍內(nèi),∴解得:2≤≤4.所以a的取值范圍是:2≤≤4.故選B.【點睛】本題考查不等式的性質(zhì),解一元一次不等式,解一元一次不等式組,等知識的理解和掌握,能根據(jù)不等式組的解集,和已知得出a≥5且1+a≤2是解此題的關(guān)鍵.變式1.(2018春·河南許昌·七年級統(tǒng)考期末)若關(guān)于x的不等式組式的整數(shù)解為x=1和x=2,則滿足這個不等式組的整數(shù)a,b組成的有序數(shù)對(a,b)共有(
)對A.0 B.1 C.3 D.2【答案】D【分析】首先解不等式組的解集即可利用a、b表示,根據(jù)不等式組的整數(shù)解僅為1,2即可確定a、b的范圍,即可確定a、b的整數(shù)解,即可求解.【詳解】由①得:由②得:不等式組的解集為:∵整數(shù)解為為x=1和x=2∴,解得:,∴a=1,b=6,5∴整數(shù)a、b組成的有序數(shù)對(a,b)共有2個故選D【點睛】本題考查一元一次不等式組的整數(shù)解,難度較大,熟練掌握一元一次不等式組相關(guān)知識點是解題關(guān)鍵.變式2.(2023春·全國·八年級階段練習(xí))對非負實數(shù)“四舍五入”到個位的值記為,即:當(dāng)為非負整數(shù)時,如果,則.反之,當(dāng)為非負整數(shù)時,如果時,則,如,,,,…若關(guān)于的不等式組的整數(shù)解恰有個,則a的范圍()A.1.5≤a<2.5 B.0.5<a≤1.5 C.1.5<a≤2.5 D.0.5≤a<1.5【答案】D【分析】將?a?看作一個字母,通過解不等式組以及不等式組的整數(shù)解即可求出a的取值范圍.【詳解】解:解不等式組,解得:,由不等式組的整數(shù)解恰有個得:,故,故答案選D.【點睛】此題主要考查了一元一次不等式組的應(yīng)用以及新定義,根據(jù)題意正確理解<x>的意義是解題的關(guān)鍵.變式3.(2023春·七年級課時練習(xí))下列說法中,①若m>n,則ma2>na2;②x>4是不等式8﹣2x<0的解集;③不等式兩邊乘(或除以)同一個數(shù),不等號的方向不變;④是方程x﹣2y=3的唯一解;⑤不等式組無解.正確的有(
)A.0個 B.1個 C.2個 D.3個【答案】B【分析】利用不等式的基本性質(zhì),解集與解的定義判斷即可.【詳解】解:①若m>n且a≠0,則ma2>na2,不正確,不符合題意;②x>4是不等式8﹣2x<0的解集,符合題意;③不等式兩邊乘(或除以)同一個數(shù)(不為0),不等號的方向不變,故不符合題意;④是方程x﹣2y=3的一組解,不是唯一解,故不符合題意;⑤不等式組的解集為x=1,故不符合題意.所以正確的個數(shù)是:1個故選:B.【點睛】本題考查了二元一次方程的解、解一元一次不等式組.熟悉二元一次方程的解,以及一元一次不等式組的解集是解題的關(guān)鍵.◎考點題型4求一元一次不等式組的整數(shù)解例.(2023秋·重慶沙坪壩·八年級重慶一中??计谀┤絷P(guān)于x的不等式組有且僅有四個整數(shù)解,且關(guān)于y的一元一次方程的解為正整數(shù),則符合條件的所有整數(shù)m的和為(
)A.-2 B.5 C.9 D.10【答案】B【分析】表示出不等式組的解集,由不等式組有且只有4個整數(shù)解確定的取值范圍,再由方程的解為正整數(shù),求出滿足條件的整數(shù)m,從而求解;【詳解】解:由得:,由不等式組有且僅有4個整數(shù)解,得到,解得:,即整數(shù),解方程,得:因為關(guān)于y的一元一次方程的解為正整數(shù)所以,故整數(shù)m的和為5,故選擇:B【點睛】本題考查了一元一次不等式組及一元一次方程整數(shù)解問題,熟練掌握運算法則是解題的關(guān)鍵.變式1.(2023·全國·九年級專題練習(xí))滿足不等式組的整數(shù)解的個數(shù)是(
)A.5 B.4 C.3 D.無數(shù)【答案】B【分析】先求出不等式組的解集,進而確定整數(shù)解,即可得出結(jié)論.【詳解】解:∵,∴,∴,∴,∴不等式組的整數(shù)解為:,共個;故選B.【點睛】本題考查求不等式組的整數(shù)解.正確的求出不等式組的解集,是解題的關(guān)鍵.變式2.(2021春·云南昆明·七年級校考期中)若關(guān)于x的不等式組的整數(shù)解只有3個,則a的取值范圍是(
)A. B. C. D.【答案】B【分析】分別求出每一個不等式的解集,得出不等式組的解集,再結(jié)合不等式組整數(shù)解的個數(shù)可確定a的范圍.【詳解】解:解不等式,得:,則不等式組的解集為,∵不等式組的整數(shù)解只有3個,即3、4、5,∴,故選:B.【點睛】本題考查的是一元一次不等式組的整數(shù)解,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.變式3.(2023春·七年級課時練習(xí))已知關(guān)于x的不等式組的所有整數(shù)解的和為,滿足條件的所有整數(shù)m的和是(
)A.13 B.-15 C.-2 D.0【答案】C【分析】先解不等式組求得解集,然后再根據(jù)所有整數(shù)解的和為確定m的取值范圍,進而確定m的可能取值,最后求和即可.【詳解】解:解不等式①可得:解不等式②可得:∴不等式組的解集為:∵不等式組的所有整數(shù)解的和為∴或∴或∴或∴m的值為,則.故選D.【點睛】本題主要考查了解一元一次不等式組、一元一次不等式的應(yīng)用等知識點,正確求解不等式成為解答本題的關(guān)鍵.◎考點題型5由不等式組的解集求參數(shù)例.(2023春·七年級課時練習(xí))若不等式組的解是,則取值范圍是(
)A. B. C. D.【答案】A【分析】先求出第一個不等式的解集,再根據(jù)口訣“同大取大”結(jié)合不等式組的解集即可求得m的取值范圍.【詳解】解:解不等式得:,∵不等式的解集為,∴,故A正確.故選:A.【點睛】本題主要考查含參數(shù)的一元一次不等式組,熟知求不等式組解集口訣“同大取大,同小取小,大小小大取中間,大大小小找不到”是解答的關(guān)鍵.變式1.(2023春·七年級課時練習(xí))若關(guān)于的不等式的正整數(shù)解是1,2,3,則的取值范圍是(
)A. B. C. D.【答案】D【分析】解關(guān)于的不等式求得,根據(jù)不等式的正整數(shù)解的情況列出關(guān)于的不等式組,解之可得.【詳解】解:移項,得:,系數(shù)化為1,得:,不等式的正整數(shù)解為1,2,3,,解得:,故選:D.【點睛】本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.變式2.(2023春·七年級課時練習(xí))若不等式組的解為,則下列各式正確的是()A. B. C. D.【答案】D【分析】根據(jù)不等式組的解集同大取較大,可得答案.【詳解】解:不等式組的解為,,故選:D.【點睛】本題考查了不等式的解集,解題的關(guān)鍵是要根據(jù)不等式組解集的求法解答.求不等式組的解集,應(yīng)注意:同大取較大,同小取較小,小大大小中間找,大大小小解不了.變式3.(2023春·四川成都·九年級成都嘉祥外國語學(xué)校校考開學(xué)考試)若關(guān)于x的一元一次不等式組的解集為x>2,則m的取值范圍是(
)A.m>1 B.m≤1 C.m<1 D.m≥1【答案】B【分析】先求出不等式①和不等式②的解集,然后根據(jù)不等式組的解集列出關(guān)于m的不等式進行求解即可.【詳解】解:解不等式①得:,解不等式②得:,∵關(guān)于x的一元一次不等式組的解集為x>2,∴,∴,故選B.【點睛】本題主要考查了根據(jù)不等式組的解集情況求參數(shù),正確求出每個不等式的解集是解題的關(guān)鍵.◎考點題型6由不等式組解集的情求參數(shù)例.(2023春·全國·八年級專題練習(xí))已知關(guān)于x的不等式組的整數(shù)解共有3個,則a的取值范圍是(
)A. B. C. D.【答案】C【分析】先分別求出兩個不等式的解集,再根據(jù)不等式組只有3個整數(shù)解進行求解即可.【詳解】解:解不等式得,解不等式,得:,∵不等式組整數(shù)解共有3個,∴,故選:C.【點睛】本題主要考查了根據(jù)不等式組的解集情況求參數(shù),正確求出兩個不等式的解集是解題的關(guān)鍵.變式1.(2022春·山東泰安·八年級統(tǒng)考期中)若不等式組無解,則的取值范圍是(
)A. B. C. D.【答案】C【分析】整理不等式組得,由題意得a<1,即可求解..【詳解】解:整理不等式組得,∵若不等式組無解,∴a<1,故選:C.【點睛】本題考查了根據(jù)不等式組的解情況確定參數(shù)的值,掌握求不等式組的解集的方法是解題的關(guān)鍵.變式2.(2022春·七年級單元測試)已知關(guān)于的不等式組有解,則的取值范圍是(
)A. B. C. D.【答案】A【分析】先求出不等式組的解集,即可求解.【詳解】解:∵關(guān)于的不等式組有解,∴不等式組的解集為,∴.故選:A【點睛】本題主要考查了解一元一次不等式組,熟練掌握解不等式組解集的口訣:同大取大,同小取小大小小大中間找,大大小小找不到(無解)是解題的關(guān)鍵.變式3.(2022春·廣西百色·七年級統(tǒng)考期末)若不等式組有實數(shù)解,則實數(shù)m的取值范圍是()A.m≤ B.m< C.m> D.m≥【答案】A【分析】先求出每個不等式的解集,再根據(jù)不等式組有實數(shù)解求出m的取值范圍即可.【詳解】解:解5﹣3x≥0,得x≤;解x﹣m≥0,得x≥m,∵不等式組有實數(shù)解,∴m≤.故選:A.【點睛】此題考查了一元一次不等式組的解,熟練掌握一元一次不等式組的解法是解題的關(guān)鍵.◎考點題型7不等式組和方程組結(jié)合的問題例.(2022春·內(nèi)蒙古呼倫貝爾·七年級??计谀┤绻P(guān)于x、y的方程組的解為正數(shù),則a的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 德化皮膚護理知識培訓(xùn)班課件
- 2025年高考理工壓題題庫及答案
- 2025年福建防疫考試題目及答案
- 2025年來賓中考信息題庫及答案
- 2025年浪潮集團考試試題及答案
- 2025年科技創(chuàng)新行業(yè)前沿科技趨勢研究報告
- 高鎳正極材料開發(fā)-洞察與解讀
- 湖南預(yù)測培訓(xùn)知識大全課件
- 2025年視頻游戲行業(yè)虛擬現(xiàn)實游戲與電競賽事發(fā)展趨勢研究報告
- 2025年食品行業(yè)植物蛋白替代肉產(chǎn)品市場前景研究報告
- 高中政治會考試題及答案
- 護理事業(yè)十五五發(fā)展規(guī)劃(2026-2030)
- JG/T 366-2012外墻保溫用錨栓
- 反恐單位視頻管理制度
- 眩暈癥中醫(yī)辯證論治
- T/CTRA 01-2020廢輪胎/橡膠再生油
- 可信數(shù)據(jù)空間解決方案星環(huán)科技
- 2025廣西專業(yè)技術(shù)人員公需科目培訓(xùn)考試答案
- 西安教師入編協(xié)議書
- 《高齡臥床高危靜脈血栓栓塞癥防治中國專家共識》解讀
- 臨床護理技術(shù)操作并發(fā)癥與應(yīng)急處理
評論
0/150
提交評論