




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁武漢民政職業(yè)學(xué)院
《人工智能程序設(shè)計實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的模型壓縮中,假設(shè)需要在不顯著降低模型性能的前提下減少模型的參數(shù)數(shù)量和計算量。以下哪種方法可以實(shí)現(xiàn)這一目標(biāo)?()A.剪枝技術(shù),去除不重要的連接和參數(shù)B.量化技術(shù),降低參數(shù)的精度C.知識蒸餾,將大模型的知識傳遞給小模型D.以上都是2、人工智能在藝術(shù)創(chuàng)作領(lǐng)域也有一定的應(yīng)用。假設(shè)要使用人工智能生成音樂或繪畫作品。以下關(guān)于人工智能在藝術(shù)創(chuàng)作中的描述,哪一項(xiàng)是錯誤的?()A.可以為藝術(shù)家提供靈感和創(chuàng)意,輔助藝術(shù)創(chuàng)作過程B.生成的作品具有獨(dú)特的風(fēng)格和創(chuàng)意,完全可以與人類藝術(shù)家的作品媲美C.人工智能藝術(shù)創(chuàng)作仍然需要人類藝術(shù)家的指導(dǎo)和審美判斷D.引發(fā)了關(guān)于藝術(shù)定義和創(chuàng)作本質(zhì)的思考和討論3、在人工智能的智能客服應(yīng)用中,需要快速準(zhǔn)確地回答用戶的問題。假設(shè)用戶的問題類型多樣,包括咨詢、投訴、技術(shù)問題等。為了提高智能客服的回答質(zhì)量和效率,以下哪種技術(shù)或策略是重要的?()A.建立大規(guī)模的問題庫和標(biāo)準(zhǔn)答案B.運(yùn)用自然語言生成技術(shù)生成回答C.引導(dǎo)用戶提出更簡單的問題D.對復(fù)雜問題直接拒絕回答4、生成對抗網(wǎng)絡(luò)(GAN)是一種新興的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像。以下關(guān)于生成對抗網(wǎng)絡(luò)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,兩者通過對抗訓(xùn)練不斷優(yōu)化B.生成器負(fù)責(zé)生成假樣本,判別器負(fù)責(zé)判斷樣本的真假C.GAN可以生成具有高度創(chuàng)造性和多樣性的新數(shù)據(jù)D.GAN的訓(xùn)練過程非常穩(wěn)定,不會出現(xiàn)模式崩潰等問題5、人工智能在醫(yī)療領(lǐng)域有著廣泛的應(yīng)用前景,例如疾病診斷、藥物研發(fā)和醫(yī)療影像分析等。以下關(guān)于人工智能在醫(yī)療領(lǐng)域應(yīng)用的描述,不正確的是()A.人工智能可以通過分析大量的醫(yī)療數(shù)據(jù),輔助醫(yī)生進(jìn)行疾病的早期診斷和預(yù)測B.在藥物研發(fā)中,人工智能可以加速藥物篩選和優(yōu)化藥物配方的過程C.雖然人工智能在醫(yī)療領(lǐng)域有諸多應(yīng)用,但它不能替代醫(yī)生的專業(yè)判斷和臨床經(jīng)驗(yàn)D.人工智能在醫(yī)療領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不存在任何風(fēng)險和挑戰(zhàn)6、在人工智能的發(fā)展中,數(shù)據(jù)的質(zhì)量和數(shù)量對模型的訓(xùn)練和性能有著重要的影響。以下關(guān)于數(shù)據(jù)在人工智能中的作用的描述,不正確的是()A.高質(zhì)量、大規(guī)模的數(shù)據(jù)能夠幫助模型學(xué)習(xí)到更準(zhǔn)確和通用的模式B.數(shù)據(jù)清洗和預(yù)處理是提高數(shù)據(jù)質(zhì)量的重要步驟,可以減少噪聲和錯誤C.即使數(shù)據(jù)量較少,通過巧妙的算法設(shè)計和模型架構(gòu),也能訓(xùn)練出性能優(yōu)異的人工智能模型D.數(shù)據(jù)的標(biāo)注工作對于監(jiān)督學(xué)習(xí)非常重要,準(zhǔn)確的標(biāo)注能夠提高模型的學(xué)習(xí)效果7、在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)是重要的分支之一。假設(shè)一個醫(yī)療診斷系統(tǒng)需要通過大量的病例數(shù)據(jù)來預(yù)測疾病,以下關(guān)于機(jī)器學(xué)習(xí)在該場景中的應(yīng)用描述,哪一項(xiàng)是不準(zhǔn)確的?()A.監(jiān)督學(xué)習(xí)可以利用有標(biāo)記的病例數(shù)據(jù)訓(xùn)練模型,以進(jìn)行疾病預(yù)測B.無監(jiān)督學(xué)習(xí)能夠發(fā)現(xiàn)病例數(shù)據(jù)中的隱藏模式和結(jié)構(gòu),輔助診斷C.強(qiáng)化學(xué)習(xí)可以通過與環(huán)境的交互和獎勵機(jī)制,優(yōu)化診斷策略D.機(jī)器學(xué)習(xí)在醫(yī)療診斷中完全可以替代醫(yī)生的經(jīng)驗(yàn)和判斷,不需要人工干預(yù)8、人工智能在醫(yī)療領(lǐng)域的應(yīng)用越來越廣泛。假設(shè)一個醫(yī)療人工智能系統(tǒng)被用于疾病診斷,它通過分析大量的醫(yī)療影像和患者數(shù)據(jù)來給出診斷建議。以下關(guān)于這種應(yīng)用的描述,正確的是:()A.該系統(tǒng)能夠完全替代醫(yī)生的診斷,因?yàn)槠浠诖髷?shù)據(jù)的分析結(jié)果更準(zhǔn)確B.醫(yī)生仍需對系統(tǒng)的診斷結(jié)果進(jìn)行最終判斷和綜合考量,因?yàn)榇嬖跀?shù)據(jù)偏差和模型局限性C.這種系統(tǒng)只適用于常見疾病的診斷,對于罕見病無能為力D.醫(yī)療人工智能系統(tǒng)的診斷結(jié)果不受數(shù)據(jù)質(zhì)量和算法選擇的影響9、人工智能中的圖像超分辨率技術(shù)可以將低分辨率圖像轉(zhuǎn)換為高分辨率圖像。假設(shè)要在保持圖像細(xì)節(jié)的同時提高超分辨率效果,以下哪個因素是最關(guān)鍵的?()A.神經(jīng)網(wǎng)絡(luò)的深度B.訓(xùn)練數(shù)據(jù)的質(zhì)量C.損失函數(shù)的選擇D.優(yōu)化器的性能10、在自然語言處理中,詞向量是一種重要的表示方法。假設(shè)要對一段文本進(jìn)行語義分析,使用詞向量模型。以下關(guān)于詞向量的描述,正確的是:()A.詞向量的維度越高,對詞語的表示就越精確,不會出現(xiàn)語義混淆B.不同的詞向量模型,如Word2Vec和GloVe,生成的詞向量不能相互轉(zhuǎn)換和比較C.詞向量可以捕捉詞語之間的語義關(guān)系,例如相似性和相關(guān)性D.詞向量一旦生成就固定不變,不能根據(jù)新的文本數(shù)據(jù)進(jìn)行更新和優(yōu)化11、人工智能中的遷移學(xué)習(xí)方法可以利用已有的知識和模型來解決新的問題。假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用到小樣本的特定領(lǐng)域圖像分類任務(wù)中。以下關(guān)于遷移學(xué)習(xí)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以將預(yù)訓(xùn)練模型的特征提取部分應(yīng)用到新任務(wù)中,并在新數(shù)據(jù)上微調(diào)B.遷移學(xué)習(xí)能夠有效解決新任務(wù)數(shù)據(jù)量不足的問題,提高模型的泛化能力C.直接使用預(yù)訓(xùn)練模型的輸出結(jié)果,無需任何調(diào)整,就能在新任務(wù)中取得好的效果D.選擇合適的預(yù)訓(xùn)練模型和遷移策略對于遷移學(xué)習(xí)的成功至關(guān)重要12、在人工智能的語音合成任務(wù)中,假設(shè)要生成自然流暢且富有情感的語音,以下關(guān)于模型訓(xùn)練的方法,哪一項(xiàng)是不正確的?()A.使用大量的語音數(shù)據(jù)進(jìn)行訓(xùn)練,包括不同的口音和情感B.引入情感標(biāo)簽,讓模型學(xué)習(xí)不同情感下的語音特征C.只訓(xùn)練模型生成單一的語音風(fēng)格,以保證一致性D.結(jié)合聲學(xué)模型和語言模型,提高語音合成的質(zhì)量13、人工智能在智能推薦系統(tǒng)中發(fā)揮著重要作用。例如,電商平臺通過分析用戶的購買歷史和瀏覽行為為用戶推薦商品。以下關(guān)于智能推薦系統(tǒng)的描述,哪一項(xiàng)是不正確的?()A.推薦系統(tǒng)可以基于用戶的協(xié)同過濾進(jìn)行推薦B.推薦系統(tǒng)只考慮用戶的近期行為,忽略歷史行為C.推薦系統(tǒng)可以結(jié)合內(nèi)容過濾和協(xié)同過濾提高推薦效果D.推薦系統(tǒng)需要不斷更新和優(yōu)化以適應(yīng)用戶興趣的變化14、機(jī)器學(xué)習(xí)是人工智能的重要分支,其中監(jiān)督學(xué)習(xí)是一種常見的學(xué)習(xí)方式。以下關(guān)于監(jiān)督學(xué)習(xí)的描述,不正確的是()A.監(jiān)督學(xué)習(xí)需要有標(biāo)記的訓(xùn)練數(shù)據(jù),即輸入數(shù)據(jù)和對應(yīng)的期望輸出B.常見的監(jiān)督學(xué)習(xí)算法包括決策樹、支持向量機(jī)和神經(jīng)網(wǎng)絡(luò)等C.監(jiān)督學(xué)習(xí)的目標(biāo)是通過學(xué)習(xí)訓(xùn)練數(shù)據(jù)中的模式和規(guī)律,對新的未知數(shù)據(jù)進(jìn)行準(zhǔn)確的預(yù)測或分類D.監(jiān)督學(xué)習(xí)只能處理數(shù)值型數(shù)據(jù),對于文本、圖像等非數(shù)值型數(shù)據(jù)無法處理15、自然語言處理是人工智能的重要應(yīng)用領(lǐng)域之一。假設(shè)我們要開發(fā)一個能夠自動回答用戶問題的智能客服系統(tǒng),需要對大量的文本數(shù)據(jù)進(jìn)行學(xué)習(xí)和理解。在這個過程中,詞向量模型如Word2Vec和GloVe起到了關(guān)鍵作用。那么,關(guān)于詞向量模型,以下說法哪一項(xiàng)是不準(zhǔn)確的?()A.能夠?qū)卧~表示為低維的實(shí)數(shù)向量,捕捉單詞之間的語義關(guān)系B.可以通過對大規(guī)模語料庫的無監(jiān)督學(xué)習(xí)得到C.不同的詞向量模型在處理多義詞時效果都很好D.詞向量的計算可以基于單詞的上下文信息16、在人工智能的自然語言生成任務(wù)中,假設(shè)要生成一篇連貫且有邏輯的文章,以下關(guān)于模型訓(xùn)練的策略,哪一項(xiàng)是不正確的?()A.使用預(yù)訓(xùn)練的語言模型,并在特定任務(wù)上進(jìn)行微調(diào)B.從簡單的句子生成開始,逐漸過渡到復(fù)雜的文章生成C.不使用任何先驗(yàn)知識或語言規(guī)則,完全依靠數(shù)據(jù)驅(qū)動的學(xué)習(xí)D.引入對抗訓(xùn)練,提高生成文本的質(zhì)量和多樣性17、在人工智能的自動駕駛場景中,車輛需要與周圍的其他車輛和基礎(chǔ)設(shè)施進(jìn)行有效的通信和協(xié)作。假設(shè)要實(shí)現(xiàn)車輛之間的安全、高效的信息交互,以下哪種通信技術(shù)和協(xié)議在可靠性和低延遲方面表現(xiàn)最為突出?()A.4G通信B.5G通信C.車聯(lián)網(wǎng)專用短程通信(DSRC)D.Wi-Fi通信18、人工智能中的異常檢測技術(shù)在許多領(lǐng)域都有需求,如網(wǎng)絡(luò)安全、工業(yè)監(jiān)控等。假設(shè)要在一個大型網(wǎng)絡(luò)中檢測異常的流量模式,需要能夠快速發(fā)現(xiàn)潛在的威脅。以下哪種異常檢測方法在處理高維、動態(tài)的數(shù)據(jù)時表現(xiàn)更為出色?()A.基于統(tǒng)計的方法B.基于聚類的方法C.基于深度學(xué)習(xí)的方法D.以上方法結(jié)合使用19、在一個利用人工智能進(jìn)行智能物流配送的系統(tǒng)中,為了實(shí)現(xiàn)高效的路徑規(guī)劃和車輛調(diào)度,以下哪種算法和技術(shù)可能會被運(yùn)用?()A.遺傳算法B.蟻群算法C.模擬退火算法D.以上都是20、人工智能中的優(yōu)化算法用于訓(xùn)練模型和尋找最優(yōu)解。假設(shè)要訓(xùn)練一個復(fù)雜的神經(jīng)網(wǎng)絡(luò)模型,以下哪種優(yōu)化算法可能最為有效?()A.隨機(jī)梯度下降(SGD)算法,簡單直接,適用于各種模型B.自適應(yīng)矩估計(Adam)算法,能夠自動調(diào)整學(xué)習(xí)率,收斂速度快C.牛頓法,計算精度高,但計算復(fù)雜度大,不適合大規(guī)模數(shù)據(jù)D.以上算法的效果取決于具體的問題和模型結(jié)構(gòu),需要進(jìn)行實(shí)驗(yàn)和比較二、簡答題(本大題共5個小題,共25分)1、(本題5分)簡述自動駕駛中的人工智能技術(shù)。2、(本題5分)談?wù)勅斯ぶ悄茉谏a(chǎn)管理中的應(yīng)用。3、(本題5分)談?wù)勅斯ぶ悄苤械哪P驮u估指標(biāo)。4、(本題5分)簡述人工智能在智能物流資源分配中的策略。5、(本題5分)簡述人工智能在文學(xué)創(chuàng)作中的應(yīng)用。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)剖析某智能安防系統(tǒng)中人工智能的角色,如入侵檢測和人員識別。2、(本題5分)以某智能民間藝術(shù)展覽布局設(shè)計系統(tǒng)為例,探討人工智能在空間利用和觀眾體驗(yàn)方面的作用。3、(本題5分)分析一個利用人工智能進(jìn)行金融風(fēng)險評估的實(shí)例,闡述其優(yōu)勢和潛在風(fēng)險。4、(本題5分)分析一個利用人工智能進(jìn)行傳統(tǒng)建筑修復(fù)方案生成的項(xiàng)目,討論其科學(xué)性和文化保護(hù)意識。5、(本題5分)考察某視頻平臺通過人工智能進(jìn)行視頻推薦的機(jī)制和用戶反饋。四、操作題(本大題共3個小題,共30分)1、(本題10分)運(yùn)用PyTorch構(gòu)建一個基于注意力機(jī)制的圖像描述生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院護(hù)理用藥安全管理體系
- 云陽龍缸國家地質(zhì)公園講解
- 2025中級財稅經(jīng)濟(jì)師高頻考點(diǎn)
- 2025一建工程經(jīng)濟(jì)高頻考點(diǎn)
- 醫(yī)學(xué)情報分析體系構(gòu)建與應(yīng)用
- 醫(yī)院自殺事件案例分析與應(yīng)對策略
- 醫(yī)院精益管理縮短出院流程優(yōu)化方案
- 2025湖南大學(xué)經(jīng)濟(jì)學(xué)高頻考點(diǎn)
- 致敬先烈團(tuán)日活動
- 第九章《雞兔同籠(一)》教學(xué)設(shè)計
- 礦山職業(yè)健康培訓(xùn)
- DG-TJ08-2170-2015 城市軌道交通結(jié)構(gòu)監(jiān)護(hù)測量規(guī)范
- 2025年度簽約主播與短視頻平臺合作協(xié)議
- 物理-江西省九江市2025屆高三第一次高考模擬統(tǒng)一考試(九江一模)試題和答案
- 數(shù)據(jù)管理知識培訓(xùn)課件
- 人文醫(yī)學(xué)課件
- 中華人民共和國建筑法
- 2024全新潔凈室培訓(xùn)
- 新版中國食物成分表
- 期中 (試題) -2024-2025學(xué)年譯林版(三起)英語三年級上冊
- 工程測量3章-角度測量
評論
0/150
提交評論