




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Mindthe
AIDivide
ShapingaGlobalPerspective
ontheFutureofWork
MindtheAIDivide:ShapingaGlobalPerspective
ontheFutureofWork
Copyright?2024UnitedNations
Allrightsreservedworldwide.
Nopartofthispublicationmay,forcommercialpurposes,bereproducedortransmitted
inanyformorbyanymeans,electronicormechanical,includingphotocopy,recordingor
anyinformationstorageandretrievalsystemnowknownortobeinvented,withoutwritten
permissionbythepublisher.
RequeststoreproduceexcerptsortophotocopyshouldbeaddressedtotheCopyright
ClearanceCenterat.
Allotherqueriesonrightsandlicenses,includingsubsidiaryrights,shouldbeaddressedto:
UnitedNationsPublications,405East42ndStreet,S-11FW001,NewYork,NY10017,United
StatesofAmerica.Email:permissions@.Website:.
Thedesignationsemployedandthepresentationofthematerialinthispublicationdonot
implytheexpressionofanyopinionwhatsoeveronthepartoftheSecretariatoftheUnited
Nationsconcerningthelegalstatusofanycountry.
PDFISBN:9789211066524
Foreword
TheunevenadoptionofArti?cialIntelligence(AI)isacriticalissuethatgoesbeyondeconomic
growth.Itimpactsglobalequity,fairnessandthesocialcontractthatisattheheartofsocialjustice.
Disparitiesinaccesstorobustinfrastructure,advancedtechnology,qualityeducationandtraining
aredeepeningexistinginequalities.AstheglobaleconomyincreasinglyshiftstowardsAI-driven
productionandinnovation,lessdevelopedcountriesriskbeingleftfurtherbehind,exacerbating
economicandsocialdivides.Withouttargetedandconcertedeffortstobridgethisdigitaldivide,
AI’spotentialtofostersustainabledevelopmentandalleviatepovertywillremainunrealized,leaving
signi?cantportionsoftheglobalpopulationdisadvantagedintherapidlyevolvingtechnological
landscape.
DuringtheconsultationsheldbytheSecretary-General’sHigh-levelAdvisoryBodyonArti?cial
Intelligence,ithasbecomeclearthattheworldofworkisattheheartoftheadoptionofAI.Itis
thuscriticaltounderstandthepotentialforAItoaffectlabourdemandandtransformoccupations.
Itisattheworkplacewherethepotentialforproductivitygainsandimprovedworkingconditions
forthebene?tofworkers,theirfamilies,andsocietiesatlarge,canberealized.Butsuchbene?ts
willnothappenontheirown;theywillonlybeachievediftherightconditionsareinplace,including
theavailabilityofdigitalinfrastructureandskills,butalsoacultureofsocialdialoguethatfostersa
positiveintegrationoftechnology.
PromotinginclusivegrowthrequiresproactivestrategiestosupportAIdevelopmentincountrieson
thewrongsideoftheAIdivide.Thisinvolvesenhancingdigitalinfrastructure,promotingtechnology
transfer,buildingAIskills,andensuringthatalljobsalongtheAIvaluechainareofgoodqualityand
improvethelivesofworkingpeople.ByprioritizinginternationalcollaborationinAIcapacitybuilding,
wecancreateamoreequitableandresilientAIecosystem,unlockingopportunitiesforshared
prosperityandhumanadvancementworldwide.
WelookforwardtocontinuingourcollaborativeeffortstoshapetheglobalgovernanceofAI,uphold
humandignityandlaborstandards,andexpandeconomicopportunityforall.
AmandeepSinghGillGilbertF.Houngbo
UnitedNationsSecretary-General’s
EnvoyonTechnology
Director-GeneraloftheInternational
LabourOrganization
MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|3
Contents
Foreword
3
Section1.Introduction
5
Section2.Unevenground:UnderstandingAI’sroleinreshapinglabourmarkets
6
Ensuringjobqualityunderaugmentation
10
Section3.TheAIvaluechainandthedemandforskills
11
AdaptingskillsfortheAIlandscape
14
Section4.Movingforward:Strengtheninginternationalcooperation,building
nationalcapacity,andaddressingAIintheworldofwork
17
StrengthenedinternationalcooperationonAI
17
BuildingnationalAIcapacity
18
TowardsapositiveintegrationofAIintheworldofwork
18
Acknowledgments
20
References
21
4|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork
Section1
Introduction
TherapidadvancementofArti?cialIntelligence
(AI)promiseswidespreadtransformations
foroursocieties,oureconomiesandthe
worldofwork.Whilesuchadvancesoffer
tremendousopportunitiesforinnovationand
productivity,theunevenratesofinvestment,
adoptionanduseamongcountriesrisks
exacerbatingthealreadywidedisparities
inincomeandqualityoflife.Thereisa
pronounced“AIdivide”emerging,wherehigh
incomenationsdisproportionatelybene?tfrom
AIadvancements,whilelow-andmedium-
incomecountries,particularlyinAfrica,lag
behind.Worse,thisdividewillgrowunless
concertedactionistakentofosterinternational
cooperationinsupportofdevelopingcountries.
Theabsenceofsuchpolicieswillnotonly
widenglobalinequalities,butriskssquandering
thepotentialofAItoserveasacatalystfor
widespreadsocialandeconomicprogress.
WhileAIwillpotentiallyaffectmanyaspects
ofourdailylives,itsimpactislikelytobemost
acuteintheworkplace.Wealthiercountries
aremoreexposedtothepotentialautomating
effectsofAIintheworldofwork,buttheyare
alsobetterpositionedtorealizetheproductivity
gainsitoffers.Developingcountries,onthe
otherhand,maybetemporarilybuffered
becauseofalackofdigitalinfrastructure,but
thisbufferrisksturningintoabottleneckfor
productivitygrowth,andmoreimportantly,for
thefutureprosperityoftheirpopulations.
Ensuringinclusivegrowthinthefuture
requiresproactivemeasurestoempowerAI
developmentincountriesatthedisadvantaged
receivingendofthedigitaldivide,fostering
digitalinfrastructureaswellasAIskills,and
promotingtechnologytransferandabsorption.
Suchdigitalskillscanalsoenableamore
positiveintegrationofAIintheworkplace,
particularlywhencombinedwithsocial
dialogue.Socialdialogueonthedesign,
implementationanduseoftechnologyatthe
workplace,aswellasinthedevelopmentof
regulationsessentialforensuringrespect
ofworkers’fundamentalrights,isneeded.
Indeed,whethertheintegrationoftechnology
intoworkprocessesspursproductivitygrowth
orimprovesworkingconditionsinsupport
ofsocialjusticedependsinlargepartonthe
strengthofsuchcollaborationanddialogue.
Sovereigneffortsplayacrucialroleinshaping
AIcapacitybuildingascountriesassert
theirautonomyindevelopingstrategies
andpoliciestailoredtotheiruniquesocio-
economiccontexts.Localprocesses,driven
byculturalvalues,politicaleconomies,and
societalneeds,cansigni?cantlyimpactthe
effectivenessandsustainabilityofAIinitiatives.
However,disparitiesinresourcesandexpertise
remainandcanhinderAIdevelopmentinthe
GlobalSouth.Inresponse,thereisagrowing
recognitionoftheresponsibilityofdeveloped
countriestosupportcapacitybuildingefforts
inresourcescarcecountries.Asoutlined
intherecentInterimReportoftheUnited
NationsSecretary-General’sHigh-levelAdvisory
BodyonAI1,thisrecognitionextendsbeyond
?nancialaidtoincludeknowledgesharing,
skillsdevelopment,technologytransfer,aswell
ascollaborativeresearchanddevelopment
partnerships.Byleveragingtheiradvanced
AIecosystems,theGlobalNorthcanhelp
bridgethegapandempowercountriesinthe
GlobalSouthtoharnessAIforsustainable
development,whilerespectingtheirsovereignty
andpromotinglocalinnovationecosystems.By
prioritizingglobalcollaborationforAIcapacity
building,theinternationalcommunitycan
nurtureamoreequitableandresilientglobalAI
ecosystem,unlockingopportunitiesforshared
prosperityandhuman?ourishingacrossthe
world.
1/ai-advisory-body
MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|5
Section2
Unevenground
UnderstandingAI’sroleinreshapinglabourmarkets
Researchonthepossibleeffectsofgenerative
AIonemploymentacrosstheworldsuggests
thatwhiletherearelikelytobeimportant
transformativeeffectsonsomeoccupations,
impactsintermsofjoblossesaremuchless
thanheadline?guresappearinginthemedia,
andcertainlydonotpointtoajoblessfuture.
Accordingtoananalysisundertakenbythe
InternationalLabourOrganizationonthe
potentialexposureoftaskstogenerativeAI
technology,clericalsupportworkersarethe
mostexposedoccupationalgroupwith24
percentofthetasksinthesejobsassociated
withhighlevelofexposuretoautomation
andanother58percentwithmedium-level
exposure(seeFigure1).2Otheroccupational
groupsarelessexposed,withonly1to4
percentoftasksconsideredashavinghigh
automationpotential,andmedium-exposed
tasksnotexceeding25percent.Thismeans
that,whilecertaintasksintheseoccupations
couldpotentiallybeautomated,mosttasks
stillrequirehumanintervention.Suchpartial
automationcouldenableef?ciencygains,by
allowinghumanstospendmoretimeonother
areasofwork.
Importantly,taskautomationdoesnot
necessarilyimplyredundancies,asthe
technologycanalsocomplementoraugment
humanlabourwhenonlycertaintasksare
automated.Whethertheadoptionofthe
technologyleadstoautomation(jobloss)or
augmentation(jobcomplementarity)depends
onthecentralityoftheautomatedtasktothe
occupation,howthetechnologyisintegrated
Figure1:Taskswithmediumandhigh-levelexposuretogenerativeAItechnologybymajor
occupationalgroup(ISCO1-digit)
Source:Gmyreketal.,2023.
2Thestudyanalysesthepotentialforautomationwiththe436internationallystandardizedISCO-08occupationsand
thenclassi?estheoccupationbasedonthemeanandstandarddeviationofthescore.Formoredetailssee[1].
6|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork
intoworkprocessesandmanagement’s
desiretoretainhumanstoperformoroversee
someofthetasks,despitethepotentialof
automation.
TheILOanalysisusesoccupationalexposure
scores(themeanexposureofeachofthe
taskswithinanoccupation)andappliesthese
scorestoemploymentdatafromlabourforce
surveysofmorethan140countriestoassess
potentialemploymentimpactattheglobal
andregionallevel.Withrespecttoautomation,
theshareofemploymentthatisexposed
ishighestinEuropeandNorthernAmerica,
re?ectingthegreatereconomicandlabour
marketdiversi?cationoftheseregions.In
LatinAmerica,AsiaandAfrica,theshareof
employmentpotentialexposedtoautomation
ismuchsmaller,duetothegreatershareof
workersemployedinoccupationsthatwould
notbeexposedtogenerativeAItechnology
suchasinagriculture,transportorfood
vending.
Nevertheless,women’spotentialexposure
totheautomatingeffectsofgenerative
AItechnologyismuchhigher,duetotheir
over-representationinclericaloccupations
(see?gure2).Inmostregions,thepotential
exposureofwomenismorethandoublethatof
men’sexposure.Someofthisemploymentisin
businessprocessoutsourcing,suchascontact
orcallcenterwork,whichisanimportantpart
oftheeconomyofseveraldevelopingcountries,
includingIndiaandthePhilippines.Theindustry
isanimportantsourceofformalandrelatively
well-paidemployment,particularlyforwomen.
Whilepotentialexposuredoesnotnecessarily
translatetodisplacement,itisclearthatthe
advancesintechnologymayputsomeofthese
jobsatrisk.3
Another?ndingisthatasigni?cantlylarger
shareoftotalemploymentisinoccupations
withhighaugmentationpotential,andthis
holdsacrossregions,from10.2percent
inSub-SaharanAfricato16.1percentin
SoutheasternAsiaandthePaci?c(See?gure
3).Thus,thepotentialforoccupationsto
bene?tfromtheproductivity-enhancingeffects
ofthetechnologyisrelativelysimilaracross
countries.Inpractice,however,itislesslikely
Figure2:Potentialexposuretoautomationbyglobalsub-region
3‘AICouldKilloffMostCallCentres,SaysTataConsultancyServicesHead’,April25,2024.
MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|7
Figure3:Potentialexposuretoaugmentationbyglobalsub-region
toberealizedduetoconstraintsinphysical
infrastructure(electricityaccess,broadband)
aswellasdigitalskills.Indeed,subsequent
researchthatincorporatesdataoncomputer
useatwork[2]revealsthatmanyofthe
occupationswithpotentialforaugmentation
haverelativelylowusageofcomputeratwork,
suggestingthattheconditionsarenotinplace
forrealizingthepotentialproductivitygains.
AscanbeseeninFigure4,theshareof
workerswithoutaccesstoacomputeratwork
(“nocomputer”)exceedsthosewhousea
computerin9ofthe16countrieslisted.As
Figure4:Potentialexposuretoaugmentationandcomputeruseatwork
Source:Gmyrek,WinklerandGarganta,2024.
8|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork
such,thelikelihoodtorealizeproductivitygains
fromgenerativeAItechnologywillbelimited.
Figure5givesinformationonthe
characteristicsofthosewhomightbeaffected
byautomationfromgenerativeAItechnologyin
LatinAmerica.Asthedatashow,itiseducated
womenlivinginurbanareasandbelonging
tothetop?fthoftheincomedistributionthat
aremostexposed.ForLatinAmerica,these
occupationsareoverwhelminglyinsalaried,
formalemploymentandinthesectorsof
?nance,professionalservicesandpublic
administration.Inshort,theyaregoodjobs,
whoselosswouldhavenegativemultiplier
effectsbotheconomicallyandsocially.
Theanalysisdoesnotaddressthepotentialfor
newjobcreation.Thus,whilemiddle-income
countriessuchasIndiaandthePhilippines,
aremoreexposedtotheautomatingeffects
ofgenerativeAItechnologyintheircallcentre
work,theirdigitalinfrastructureandskilled
workforcecanalsobeanassetforspawning
thegrowthofcomplementaryindustries.
Harnessingsuchpotentialisparamount.
Indeed,withtherightconditionsinplace,a
newwaveoftechnologycouldfuelgrowth
opportunities.Inthepast,technological
advancementshavespurrednewand
successfulindustriesinmanydeveloping
countries.OnesuchexampleistheM-Pesa
moneyservice,whichreliedonthediffusion
ofmobiletelephonesinKenya.Theservice,
inturn,increased?nancialinclusionwhich
helpedtopropelthegrowthofSMEsandled
tocreationofanetworkof110,000agents,
40timesthenumberofbankATMsinKenya
[3];[4].Similarly,astudyofthediffusionof3G
coverageinRwandabetween2002and2019
foundthatincreasedmobileinternetcoverage
Figure5:Characteristicsofpersonsholdingoccupationsmostexposedtoautomation,
LatinAmerica
Source:Gmyrek,WinklerandGarganta,2024(forthcoming).
MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|9
waspositivelyassociatedwithemployment
growth,increasingbothskilledandunskilled
occupations[5].Scholars[6]also?ndpositive
employmenteffects,fromthearrivalofinternet
in12Africancountries,albeitwithaslight
biastowardsskilledoccupations.Thesegains
areattributedtoincreasesinproductivityand
growthofmarketsthatfollowedincreased
connectivity,underliningtheneedforsuch
investments,givenimportantmultipliereffects
ontheeconomyandlabourmarkets.
Ensuringjobqualityunder
augmentation
Anotherareaofconcernisabouttheimpact
ofAItechnologyonworkingconditionsand
jobqualitywhenthetechnologyisintegrated
intotheworkplace.Whilesuchintegration
intoworktaskscanpotentiallypromotemore
engagingworkifroutinetasksareautomated,
itcanalsobeimplementedinwaysthat
limitsworkers’agencyoraccelerateswork
intensity.ConcernsoverAI’sintegrationat
theworkplacehasfocusedonthegrowthof
algorithmicmanagement,essentiallywork
settingsinwhich“humanjobsareassigned,
optimized,andevaluatedthroughalgorithms
andtrackeddata”[7].Algorithmicmanagement
isade?ningfeatureofdigitallabourplatforms,
butitisalsopervasiveinof?ineindustries
suchasthewarehousingandlogisticssectors.
Inwarehousesanautomated,“voice-picking”
systemdirectswarehousestafftopickcertain
productsinthewarehouse,whileusingdata
collectiontomonitorworkersandsetthe
paceofwork[8].Besideslackingautonomyto
organizetheirworkorsetitspace,workersalso
havelittleabilitytoprovidefeedbackordiscuss
withmanagementabouttheorganizationof
work[9].TheintegrationofgenerativeAIinto
other?eldssuchasbanking,insurance,social
services,andcustomerservicemorebroadly
mayhaveasimilareffect.
Technologicaladvancementsareoftenfelt
moreimmediatelyattheworkplaceleveland
areusuallybestaddressedattheworkplace.
Asaresult,whethertheeffectoftechnology
onworkingconditionsispositiveornegative
dependsinlargepartonthevoicethatworkers
haveinthedesign,implementationanduseof
technology.Havingsuchagencyreliesinturn
ontheopportunitiesforworkerparticipation
anddialogue.Thiscantakeplaceeither
throughformalizedsettings,suchasworks
councilsorguidanceprovidedincollective
bargainingagreements,orlessformally,in
workplaceswherethereisahighdegreeof
employeeengagement.StudiesinEurope
haveshownthatitiscountrieswithstronger
andmorecooperativeformsofworkplace
consultation,essentiallytheNordiccountries
andGermany,whereworkersaremoreopento
technologicaladoptionattheworkplace[10].
10|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork
Section3
TheAIvaluechainand
thedemandforskills
Liketheproductionofmanygoodsand
servicesintheglobaleconomy,AIhasitsown
valuechain.AsdepictedinFigure6,thereare
differentstagesoftheAIvaluechain,eachwith
speci?chumanandsocialinfrastructureneeds.
Asistypicalinmostglobalvaluechains,stages
differintheamountofvaluereceivedforthe
contributionmade,withlower-valueadded
activitiespredominantinmiddleandlow-
incomecountriesanddesignanddeployment
associatedwithhigher-incomecountries.
Dataisfundamentaltothedevelopmentand
operationofAIsystems.Human-prepared
dataisfedintoAIsystemstohelpthemlearn
thenecessaryconnectionsandpatternsfor
functionality.Thesourcesofthisdataare
diverse,dependingonthesystem’spurpose.
Publiclyavailabledata,suchasUnitedNations
documentsusedfortrainingtranslation
programs,contributedtoadvancesinnatural
languageprocessing.Proprietarydataisalso
crucial,particularlyinworkplaceapplications,
likecallcenterrecordingsusedtotrain
chatbotsforcustomerservice.Withglobal
connectivity,datacollectioncontinuesto
providetheessentialrawmaterialforfutureAI
applications.
Whendataiscollected,itisusually
unstructured.Highlyskilleddataengineers
willpre-processthedataintoausableformat,
but‘datalabelers’areneededtolabeland
classifydatasothatitisusable.Labelled
andannotateddatasetsarecriticalforthe
developmentandeffectivenessofmachine
learningmodels.Workersinvolvedindata
enrichmentcarryoutanarrayoftasksthat
includemarkingradiologyscanstoaidin
creatingAIsystemscapableofdetecting
cancer;categorizingtoxicandunsuitable
onlinecontenttoimprovecontentmoderation
algorithmsordiminishthenegativityinlarge
languagemodelresponses;annotating
videofootagefromdrivingsessionstotrain
autonomousvehicles;editinglargelanguage
modeloutputstoboosttheirfunctionality;and
more.4
Contentmoderationistheprocessof
monitoringand?lteringuser-generated
contentondigitalplatforms,suchassocial
media,forums,andwebsites,toensurethat
itcomplieswiththeplatform’sguidelinesand
policies.Thegoalofcontentmoderationis
tomaintainasafe,respectful,andpositive
environmentforallusersbyremovingor
Figure6:ValuechainofAI
1234567
Note:Orangerepresentstheactivitiesthathavelowervalue-added.
Source:Authors’elaboration.
4ValuingDataEnrichmentWorkers:TheCaseforaHuman-CentricApproachtoAIDevelopment|UnitedNations
MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|11
?aggingcontentthatisinappropriate,offensive,
harmful,orillegal.Contentmoderationcanbe
performedmanuallybyhumanmoderators
orautomaticallybyusingalgorithmsand
machinelearningtools.Thetypesofcontent
thatmaybesubjecttomoderationcanvary
widely,includingbutnotlimitedtohate
speech,harassment,violence,nudity,andfalse
information.Evenwiththeuseofalgorithms
andmachinelearningtoolsforcontent
moderation,thereistypicallyalwaysahuman
involvedintheprocess.Thesetechnologies
canhelpautomateandscalethemoderation
process,buttheyarenotperfectandcan
sometimesmakemistakesormissnuances
thatahumanmoderatorwouldbeabletopick
upon.
Inmanycases,algorithmsareusedto?ag
orprioritizecontentforreviewbyhuman
moderators,whothenmakethe?naldecision
onwhetherthecontentshouldberemovedor
allowedtoremainontheplatform.Additionally,
humanmoderatorsmayalsobeinvolvedin
trainingandimprovingthealgorithms,by
providingfeedbackandlabellingdatathatcan
beusedtore?nethesystem’saccuracyand
effectiveness.Individualstaskedwithcontent
moderationdutiesinsocialmediaplatforms
oftensufferfromanxiety,depression,andpost-
traumaticstressdisorder,adirectconsequence
oftheircontinuousexposuretodistressing
materialssuchasmurder,suicide,sexual
assault,orchildabusevideos.
Theseexamplesdemonstratehowhumansare
integraltotheprovisionofservicesmarketed
ordescribedas“arti?cialintelligence”.Indeed,
JeffBezosdescribedAmazon’sMechanical
Turk(AMT)platformas“arti?cial-arti?cial-
intelligence”asitwashumanintelligence
thatwasprovidingthelabour-intensivework
neededforarti?cialintelligencesystemsto
operate.AsdescribedontheAMTsite,the
platformprovides“anon-demand,scalable,
humanworkforcetocompletejobsthat
humanscandobetterthancomputers,for
example,recognizingobjectsinphotos”.5
Workersontheplatformareaccessiblethrough
anapplicationprogramminginterface(API),
allowingprogrammerstocallonworkerswith
afewsimplelinesofcodewhenworkingonan
algorithm[11].
InadditiontoplatformssuchasAMTand
Appen,datalabelerssometimesworkthrough
third-partycompanieshiredbyleading
tech?rms,inasubcontractingrelationship.
Althoughtherearestillmanydatalabelers
workingintheUnitedStatesinEurope,muchof
theworkisbeingdoneindevelopingcountries,
giventhelowremunerationassociatedwiththe
work.Whileprecise?guresonthenumbersof
personsworkingasdatalabelersdonotexist,
estimatesrangeinthetensofmillions,and
demandforsuchworkislikelytocontinueas
AIdatasetsandtrainingneedsgrow[12].The
sizeofthemarketisestimatedatbetweenUS
$1-$3billionandlikelytoexperiencedouble-
digitgrowthoverthenext5years[13].
Datalabelingworkdoesnotrequiremany
quali?cations,besidesliteracy,digitalskills
andaccesstocomputer(ormobiledevice)and
internet.Studiesofearningsofonlineplatform
workersintheUSthatperformthiswork,
regularlyreportmedianearningsofroughly$2
-$3perhour,orwellbelowthefederalminimum
wageofUS$7.25[14];[11].Giventhelowlevel
ofpay,itisunsurprisingthatmuchofthiswork
hasmovedtodevelopingcountries.
Butevenfromadevelopingcountry
perspective,theearningsarelow,particularly
consideringtheskillleveloftheworkforce,
withmanyworkersholdinguniversityand
post-graduatedegrees[11].Fortheworkers
whoworkthroughdigitallabourplatforms–
andnotbusinessprocessoutsourcing?rms
–thereistheaddedconcernthattheyare
hiredasindependentcontractorsandarethus
notcoveredbytheprotectionsandbene?ts
emanatingfromastandardemployment
relationship.Moreover,analysesofearnings
differentialsbetweenworkersinIndiadoing
similartypesofdataannotationworkrevealed
thatplatformworkersearnedtwo-thirds
lessthancomparable,non-platformworker
employees,evenbeforeaccountingforother
bene?tssuchassocialinsurancecontributions
[15].
5SeeAmazonMechanicalTurkAPIReference-AmazonMechanicalTurk.Accessedon9June2024.
12|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork
Butevenamongbusinessprocessoutsourcing
?rms,thereareconcernsabouttheworking
conditionsoftheseworkers,withonecase
studyofadataannotationenterprisewith
of?cesinKenyarevealinglowpay,insecure
workandgender-basedworkplaceviolence
[16].Furthermore,thestudyarguedthatthe
dataannotationskillsusedinthislineofwork
werenotessentiallytransferable,questioning
thecareer-enhancingimpactofthislineof
work.
Movingalongthevaluechain,thesubsequent
parts–modeldesign,modeltrainingand
tuning,deploymentandmaintenance–
representacontrastingpicturewiththe
skillsneedsandworkingconditionsof
dataannotationwork.Theyalsoinvolve
muchgreaterrequirementsforphysical
infrastructure,particularlycomputepower
necessaryformodeltrainingandtuning.These
stagesrequiretheskillsofhighlyquali?ed
computerscientistsorgraduatesfrom
otherSTEM6?eldsinadditiontosigni?cant
investmentsinresearchanddevelopment.
ApartfromChinaandIndia,emergingmarkets
havegarneredonlyasmallportionofglobal
investmentinadvancedtechnologies.From
2008to2017,totalventurecapital?owsto
emergingmarkets,excludingChinaandIndia,
amountedtojust$24billion,whiletheUnited
Statesaloneattracted$694billionduringthe
sameperiod.7
Annually,morethan$300billionisspent
globallyontechnologytoenhancecomputing
capacity.However,theseinvestmentsare
unevenlyspread,makingthedisparityinaccess
tocomputinginfrastructurebothwithinand
amongvariousregionsincreasinglyevident.A
limitednumberofcountriesareleadingtheway
indevelopingcomputecapacity,whilemany
othersarebeginningfromalowbase.TheUS
holdsasigni?cantadvantageindata-centre
construction,farsurpassinginvestmentsmade
byanyothernation.AlthoughChina,Singapore,
theNetherlands,andafewothershave
developedsubstantialcapacity,mostcountries
havefewerthan20top-tierdatacentres.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年保密觀知識(shí)競(jìng)賽題庫(含參考答案)
- 3.4 人類的聚居地-聚落 說課稿-2023-2024學(xué)年七年級(jí)地理上學(xué)期人教版
- 第14課 明朝的統(tǒng)治(教學(xué)設(shè)計(jì))七年級(jí)歷史下冊(cè)同步備課系列(部編版)
- 2025年三基護(hù)理考試試題及答案解析
- 2025年中級(jí)經(jīng)濟(jì)師題庫含完整答案【有一套】
- 2025年保定職業(yè)技術(shù)學(xué)院單招職業(yè)技能測(cè)試題庫附答案
- 2025年(公需科目)人工智能與健康考試題庫試題及答案(一)人工智能
- 2024年屆九年級(jí)歷史上冊(cè) 第10課“解放者”的風(fēng)采說課稿2 北師大版
- 2024年高中語文 第一單元 以意逆志知人論世 第3課 自主賞析 擬行路難(其四)說課稿 新人教版選修《中國古代詩歌散文欣賞》
- 3D打印微針電極及其生物傳感應(yīng)用研究
- 2025-2030中國抗骨質(zhì)疏松藥物市場(chǎng)調(diào)研及未來增長預(yù)測(cè)報(bào)告
- 房屋安全性鑒定培訓(xùn)試題及答案解析
- 2025廣西南寧上林縣公安局面向社會(huì)招聘警務(wù)輔助人員50人筆試備考試題及答案解析
- 火鍋店引流截流回流方案
- 黑龍江省齊齊哈爾市富拉爾基區(qū)2024-2025學(xué)年高一上學(xué)期期中考試生物試題含參考答案
- 2025年檔案員考試試題及答案
- 倉庫內(nèi)安全培訓(xùn)資料課件
- 2025-2026學(xué)年七年級(jí)英語上學(xué)期第一次月考 (福建專用) 2025-2026學(xué)年七年級(jí)英語上學(xué)期第一次月考 (福建專用)原卷
- 國自然培訓(xùn)課件
- 高二第一次月考物理試卷含答案解析
- 2025安徽普通專升本《大學(xué)語文》統(tǒng)考試題及答案
評(píng)論
0/150
提交評(píng)論