貴州省貴陽市示范名校2024年高考仿真卷數(shù)學(xué)試卷含解析_第1頁
貴州省貴陽市示范名校2024年高考仿真卷數(shù)學(xué)試卷含解析_第2頁
貴州省貴陽市示范名校2024年高考仿真卷數(shù)學(xué)試卷含解析_第3頁
貴州省貴陽市示范名校2024年高考仿真卷數(shù)學(xué)試卷含解析_第4頁
貴州省貴陽市示范名校2024年高考仿真卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

貴州省貴陽市示范名校2024年高考仿真卷數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.22.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內(nèi)可填寫的條件是()A. B. C. D.3.函數(shù)的大致圖像為()A. B.C. D.4.已知滿足,則的取值范圍為()A. B. C. D.5.橢圓是日常生活中常見的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計),在玻璃杯傾斜的過程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是()A. B. C. D.6.已知平面平面,且是正方形,在正方形內(nèi)部有一點,滿足與平面所成的角相等,則點的軌跡長度為()A. B.16 C. D.7.將函數(shù)圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數(shù)的圖象,則函數(shù)圖象的一個對稱中心為()A. B. C. D.8.已知,函數(shù)在區(qū)間上恰有個極值點,則正實數(shù)的取值范圍為()A. B. C. D.9.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.10.設(shè),是方程的兩個不等實數(shù)根,記().下列兩個命題()①數(shù)列的任意一項都是正整數(shù);②數(shù)列存在某一項是5的倍數(shù).A.①正確,②錯誤 B.①錯誤,②正確C.①②都正確 D.①②都錯誤11.已知銳角滿足則()A. B. C. D.12.設(shè)全集,集合,,則集合()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為拋物線的焦點,為上互相不重合的三點,且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標為_______.14.已知函數(shù)()在區(qū)間上的值小于0恒成立,則的取值范圍是________.15.已知拋物線的焦點為,斜率為的直線過且與拋物線交于兩點,為坐標原點,若在第一象限,那么_______________.16.六位同學(xué)坐在一排,現(xiàn)讓六位同學(xué)重新坐,恰有兩位同學(xué)坐自己原來的位置,則不同的坐法有________種(用數(shù)字回答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調(diào)整眼及頭部的血液循環(huán),調(diào)節(jié)肌肉,改善眼的疲勞,達到預(yù)防近視等眼部疾病的目的.某學(xué)校為了調(diào)查推廣眼保健操對改善學(xué)生視力的效果,在應(yīng)屆高三的全體800名學(xué)生中隨機抽取了100名學(xué)生進行視力檢查,并得到如圖的頻率分布直方圖.(1)若直方圖中后三組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以上的人數(shù);(2)為了研究學(xué)生的視力與眼保健操是否有關(guān)系,對年級不做眼保健操和堅持做眼保健操的學(xué)生進行了調(diào)查,得到下表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關(guān)系?(3)在(2)中調(diào)查的100名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取8人,進一步調(diào)查他們良好的護眼習(xí)慣,在這8人中任取2人,記堅持做眼保健操的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.附:0.100.050.0250.0100.005k2.7063.8415.0246.6357.87918.(12分)表示,中的最大值,如,己知函數(shù),.(1)設(shè),求函數(shù)在上的零點個數(shù);(2)試探討是否存在實數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.19.(12分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.20.(12分)設(shè)函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(21.(12分)如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值22.(10分)為了響應(yīng)國家號召,促進垃圾分類,某校組織了高三年級學(xué)生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學(xué)的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認為“性別”與“問卷結(jié)果”有關(guān)?男女總計合格不合格總計(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學(xué)生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學(xué)期望.附:0.1000.0500.0100.0012.7063.8416.63510.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由圖像用分段函數(shù)表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應(yīng)用,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于中檔題.2、C【解析】

根據(jù)循環(huán)結(jié)構(gòu)的程序框圖,帶入依次計算可得輸出為25時的值,進而得判斷框內(nèi)容.【詳解】根據(jù)循環(huán)程序框圖可知,則,,,,,此時輸出,因而不符合條件框的內(nèi)容,但符合條件框內(nèi)容,結(jié)合選項可知C為正確選項,故選:C.【點睛】本題考查了循環(huán)結(jié)構(gòu)程序框圖的簡單應(yīng)用,完善程序框圖,屬于基礎(chǔ)題.3、D【解析】

通過取特殊值逐項排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域為,當(dāng)時,,排除B和C;當(dāng)時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.4、C【解析】

設(shè),則的幾何意義為點到點的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設(shè),則的幾何意義為點到點的斜率,作出不等式組對應(yīng)的平面區(qū)域如圖:由圖可知當(dāng)過點的直線平行于軸時,此時成立;取所有負值都成立;當(dāng)過點時,取正值中的最小值,,此時;故的取值范圍為;故選:C.【點睛】本題考查簡單線性規(guī)劃的非線性目標函數(shù)函數(shù)問題,解題時作出可行域,利用目標函數(shù)的幾何意義求解是解題關(guān)鍵.對于直線斜率要注意斜率不存在的直線是否存在.5、C【解析】

根據(jù)題意可知當(dāng)玻璃杯傾斜至杯中水剛好不溢出時,水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質(zhì)即可確定此時橢圓的離心率,進而確定離心率的取值范圍.【詳解】當(dāng)玻璃杯傾斜至杯中水剛好不溢出時,水面邊界所形成橢圓的離心率最大.此時橢圓長軸長為,短軸長為6,所以橢圓離心率,所以.故選:C【點睛】本題考查了橢圓的定義及其性質(zhì)的簡單應(yīng)用,屬于基礎(chǔ)題.6、C【解析】

根據(jù)與平面所成的角相等,判斷出,建立平面直角坐標系,求得點的軌跡方程,由此求得點的軌跡長度.【詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點建立平面直角坐標系如下圖所示,則,,設(shè)(點在第一象限內(nèi)),由得,即,化簡得,由于點在第一象限內(nèi),所以點的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點的軌跡長度為.故選:C【點睛】本小題主要考查線面角的概念和運用,考查動點軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.7、D【解析】

根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數(shù)的圖象,故選:D【點睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關(guān)性質(zhì),基礎(chǔ)題.8、B【解析】

先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數(shù)在區(qū)間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數(shù)量積運算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.9、A【解析】

結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項和公式和對數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點睛】本題考查與“楊輝三角”有關(guān)的規(guī)律求解問題,邏輯推理,等比數(shù)列前項和公式應(yīng)用,屬于中檔題10、A【解析】

利用韋達定理可得,,結(jié)合可推出,再計算出,,從而推出①正確;再利用遞推公式依次計算數(shù)列中的各項,以此判斷②的正誤.【詳解】因為,是方程的兩個不等實數(shù)根,所以,,因為,所以,即當(dāng)時,數(shù)列中的任一項都等于其前兩項之和,又,,所以,,,以此類推,即可知數(shù)列的任意一項都是正整數(shù),故①正確;若數(shù)列存在某一項是5的倍數(shù),則此項個位數(shù)字應(yīng)當(dāng)為0或5,由,,依次計算可知,數(shù)列中各項的個位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個位數(shù)字為0或5的項,故②錯誤;故選:A.【點睛】本題主要考查數(shù)列遞推公式的推導(dǎo),考查數(shù)列性質(zhì)的應(yīng)用,考查學(xué)生的綜合分析以及計算能力.11、C【解析】

利用代入計算即可.【詳解】由已知,,因為銳角,所以,,即.故選:C.【點睛】本題考查二倍角的正弦、余弦公式的應(yīng)用,考查學(xué)生的運算能力,是一道基礎(chǔ)題.12、C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】

設(shè)出三點的坐標,結(jié)合等差數(shù)列的性質(zhì)、線段垂直平分線的性質(zhì)、拋物線的定義進行求解即可.【詳解】拋物線的準線方程為:,設(shè),由拋物線的定義可知:,,,因為、、成等差數(shù)列,所以有,所以,因為線段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點睛】本題考查了拋物線的定義的應(yīng)用,考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運算能力.14、【解析】

首先根據(jù)的取值范圍,求得的取值范圍,由此求得函數(shù)的值域,結(jié)合區(qū)間上的值小于0恒成立列不等式組,解不等式組求得的取值范圍.【詳解】由于,所以,由于區(qū)間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:【點睛】本小題主要考查三角函數(shù)值域的求法,考查三角函數(shù)值恒小于零的問題的求解,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.15、2【解析】

如圖所示,先證明,再利用拋物線的定義和相似得到.【詳解】由題得,.因為.所以,過點A、B分別作準線的垂線,垂足分別為M,N,過點B作于點E,設(shè)|BF|=m,|AF|=n,則|BN|=m,|AM|=n,所以|AE|=n-m,因為,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案為:2【點睛】本題主要考查直線和拋物線的位置關(guān)系,考查拋物線的定義,意在考查學(xué)生對這些知識的理解掌握水平.16、135【解析】

根據(jù)題意先確定2個人位置不變,共有種選擇,再確定4個人坐4個位置,但是不能坐原來的位置,計算得到答案.【詳解】根據(jù)題意先確定2個人位置不變,共有種選擇.再確定4個人坐4個位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點睛】本題考查了分步乘法原理,意在考查學(xué)生的計算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關(guān)系(3)詳見解析【解析】

(1)由題意可計算后三組的頻數(shù)的總數(shù),由其成等差數(shù)列可得后三組頻數(shù),可得視力在5.0以上的頻率,可得全年級視力在5.0以上的的人數(shù);(2)由題中數(shù)據(jù)計算的值,對照臨界值表可得答案;(3)由題意可計算出這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,可得X可取0,1,2,分別計算出其概率,列出分布列,可得其數(shù)學(xué)期望.【詳解】解:(1)由圖可知,第一組有3人,第二組7人,第三組27人,因為后三組的頻數(shù)成等差數(shù)列,共有(人)所以后三組頻數(shù)依次為24,21,18,所以視力在5.0以上的頻率為0.18,故全年級視力在5.0以上的的人數(shù)約為人(2),因此能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關(guān)系.(3)調(diào)查的100名學(xué)生中不近視的共有24人,從中抽取8人,抽樣比為,這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,X可取0,1,2,,X的分布列X012PX的數(shù)學(xué)期望.【點睛】本題主要考查頻率分布直方圖,獨立性檢測及離散型隨機變量的期望與方差等相關(guān)知識,考查學(xué)生分析數(shù)據(jù)與處理數(shù)據(jù)的能力,屬于中檔題.18、(1)個;(1)存在,.【解析】試題分析:(1)設(shè),對其求導(dǎo),及最小值,從而得到的解析式,進一步求值域即可;(1)分別對和兩種情況進行討論,得到的解析式,進一步構(gòu)造,通過求導(dǎo)得到最值,得到滿足條件的的范圍.試題解析:(1)設(shè),.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設(shè),結(jié)合與在上圖象可知,這兩個函數(shù)的圖象在上有兩個交點,即在上零點的個數(shù)為1...........................5分(或由方程在上有兩根可得)(1)假設(shè)存在實數(shù),使得對恒成立,則,對恒成立,即,對恒成立,................................6分①設(shè),令,得遞增;令,得遞減,∴,當(dāng)即時,,∴,∵,∴4.故當(dāng)時,對恒成立,.......................8分當(dāng)即時,在上遞減,∴.∵,∴,故當(dāng)時,對恒成立............................10分②若對恒成立,則,∴...........11分由①及②得,.故存在實數(shù),使得對恒成立,且的取值范圍為................................................11分考點:導(dǎo)數(shù)應(yīng)用.【思路點睛】本題考查了函數(shù)恒成立問題;利用導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性,進一步求最值;屬于難題.本題考查函數(shù)導(dǎo)數(shù)與單調(diào)性.確定零點的個數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點個數(shù),如果函數(shù)較為復(fù)雜,可結(jié)合導(dǎo)數(shù)知識確定極值點和單調(diào)區(qū)間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點的問題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理.恒成立問題以及可轉(zhuǎn)化為恒成立問題的問題,往往可利用參變分離的方法,轉(zhuǎn)化為求函數(shù)最值處理.也可構(gòu)造新函數(shù)然后利用導(dǎo)數(shù)來求解.注意利用數(shù)形結(jié)合的數(shù)學(xué)思想方法.19、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結(jié)果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【點睛】本題考查三角形面積公式,正弦定理以及余弦定理的應(yīng)用,關(guān)鍵在于識記公式,屬中檔題.20、(I)π;(II)-【解析】

(I)化簡得到fx(II)f(α2)=2sin【詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論