




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021高中數學歷年教資考試真題含解析
2019年上半年教師資格考試高中數學
一、單項選擇題(本大題共8小題,每小題5分,共40分)
1.下列選項中,運算結果一定是無理數的是()
A.有理數和無理數的和B.有理數與有理數的差
C.無理數和無理數的和D.無理數與無理數的差
2
Xacost,
.2
2.在空間直角坐標系中,由參數方程yasmt,(0Wt<2)所確定的曲線的
Zasin2t,
一般方程為()
222222
xya,Xy'a,Xya.Xya,
C.
A.2B.2D.2
z2xyz4xyZ22xyZ4xy
xcoscos,
3.已知空間直角坐標與球坐標的變換公式為ycossin,(0,
zsin,
,--),則在球坐標系中,=一表示的圖形是()
223
A.柱面B.圓面C.半平面D.半錐面
4.設A為n階矩陣,B是經A若干次初等行變換得到的矩陣,則下列結論正確
的是()
A.|A|=|B|B.|A|A|B|
C若|A|=0,則一定有|B|=0D.若|A|>0,則一定有|B|>0
n112n11,
5.已知fX1X,則f(1)=()
n12n1!
A.-1B.0C.1D.
111
6.若矩陣Ax4y有三個線性無關的特征向量,2是A的二重特征根,
335
則()
A.x=-2,y=2B.x=1,y=-1C.x=2,y=-2D,x=-1?y=1
7.下列表述屬于數學直觀想象素養(yǎng)的是()
①利用圖形描述,分析數學問題;
2021高中數學歷年教資考試真題含解析
②借助空間形式認識事物的位置關系,形態(tài)變化和運動規(guī)律;
③建立形與數的關系,構建數學問題直觀模型,探索解決問題的思路;
④在實際情境中從數學的視角發(fā)現(xiàn)問題,提出問題,分析問題建立模型。
A.①②⑤B.?2)@D.②??
8.下列描述為演繹推理的是()
A.從一般到特殊的推理B.從特殊到一般的推理
C.通過實驗驗證結論的推理D.通過觀察猜想得到結論的推理
二、簡答題(本大題共5小題,每小題7分,共35分)
9.一次實踐活動中,某班甲、乙兩個小組各20名同學在綜合實踐基地脫玉米、完
成脫粒數量(千克)的數據如下:
甲組:57,59,63,63,64,71,71,71,72,7575,
78,79,82,83,83,85,86,86,89
乙組:50,53,57,62,62,63,65,65,67,68
69,73,76,77,78,85,85,88,94,96
問題:
(D)分別計算甲、乙兩組同學脫粒數量(千克)的中位數;(2分)
0)比照甲,乙兩組數據,請你給出2種信息,并說明實際意義。(5分)
10.在空間直角坐標系下,試判定直線li:xy1。,與直線J:
x2yz20
2LJ」的位置關系,并求這兩條直線間的距離。
211
11.在平面直角坐標系下,
(1)三次多項式函數的圖象過四個點Pi(0,1),Pi(1,3),P3(-1,3),
P4(2,15),求該三次多項式函數的表達式;(4分)
(2)設Pi(X”yi)(i=1,2,,n)是平面上滿足條件Xi〈X2〈Xn的n個點,
則由這n個點所唯一確定的多項式函數的最高次數是多少?簡要說明理由。(3
分)
12.高中數學課程是培養(yǎng)公民素質的基礎性課程,簡述“基礎性”的含義,并
舉例說明。
13.評價學生的數學學習應該采用多樣化的方式,請列舉四種不同類型的評價方
2021高中數學歷年教資考試真題含解析
式。
三、解答題(本大題1小題,10分)
14.設R2為二維歐式平面,F(xiàn)是R2到R2的映射,如果存在一個實數,01,
使得對于任意的P,QeR2,有d(F(P),F(Q))Wd(P,Q),(其中d
(P,Q)表示P,Q兩點間的距離),則稱F是壓縮映射。
設映射T:R2R2,
T((x,y))=Lx,ly>x,yR2<,
23
(1)證明:映射T是壓縮映射:(4分)
(2)設Po=Po(Xo,yo)為R2中任意一點,令Pn=T(Pn-1),n=1,2,3,,證明:
n8時,平面點列{Pn}收斂,并求limPn。(6分)
四、論述題(本大題1小題,15分)
15.函數是中學數學課程的主線,請結合實例談談如何用函數的觀點來認識中學
數學課程中的方程、不等式、數列等內容。
五、案例分析題(本大題1小題,共20分)
16.案例:下面提供的案例是教師A和教師B在《方程的根與函數的零點》教學
中的“課堂提問”。
教學環(huán)節(jié)教師A教師B
概念的引入1.方程lnx+2x-6=0是否有1.觀察三組一元二次方程
實數根?及其相應的二次函數,你
2.在初中你是如何判斷一能發(fā)現(xiàn)方程的根和函數
個方程是否有實數根圖象與X軸交點之間有何
的?關系嗎?
3.函數與方程之間有什么
關系?
概念的學習4.怎樣定義函數的零點?2.函數的零點如何定義?
5,函數的零點是零嗎?3.f(x)=-x2-2x+3的零點
是什么?
4.根據下列函數圖象,判
2021高中數學歷年教資考試真題含解析
斷函數有幾個零點?
概念的意義6.函數零點的幾何意義是5.函數零點的幾何意義
什么?是什么?
零點存在性定理的引入7.根據函數圖象判斷滿足6.觀察f(x)=-x2-2x+3的
什么條件時函數有零圖象,它在卜4,-2]上有零
點?點,計算f(-4)和f(-2)
的乘積,你能發(fā)現(xiàn)這個乘
積有什么特點?在區(qū)間
[0,2]上是否也具有這種
特點?
零點存在性定理的學習(教師板書:如果函數(教師板書:如果函數
y=f(x)在區(qū)間[a,b]上y=f(x)在區(qū)間[a,b]上
的圖象是連續(xù)不斷的一的圖象是一條連續(xù)不斷的
條曲線,并且有f(a)-f一條曲線,并且f(a)4
(b)<0,那么函數y=f6)<0,那么函數y=f
(x)在區(qū)間(a,b)內(x)在區(qū)間(a,b)內
有零點,即存在CG(a,有零點,即存在ce(a,
b)使f(c)=0,這個cb)使得f(c)=0,這個c
也就是方程f(c)團的根)也就是方程f(x)=0的根)
8.滿足定理條件的函數零7.為何要求函數的圖象
點是唯一的嗎?連續(xù)?
9.滿足什么條件零點唯8.能否由“函數f(x)
一?依據是什么?在區(qū)間(a,b)內有零點'
得到“f(a)?f(b)VO”?
9.如果函數圖象在[a,b]±
連續(xù),能否由“f(a)?f
(b)VO”判斷函數在區(qū)
間(a,b)內零點只有一
個?
2021高中數學歷年教資考試真題含解析
例題及練習、小結(略)(略)
問題:
?)請對兩位教師的課堂提問進行評價,并簡述理由;(15分)
0)請對兩位教師“概念引入”環(huán)節(jié)的課堂提問給出改進建議。(5分)
六、教學設計題(本大題1小題,30分)
17.“簡單隨機抽樣(第一課時)”的教學目標設計如下。
目標一:學會從現(xiàn)實生活或其他學科中提出具有一定價值的統(tǒng)計問題,理解隨機
抽樣的必要性;
目標二:結合具體的實際問題情境,體會簡單隨機抽樣的重要性;
目標三:以“問題鏈”的形式理解樣本是否具有代表性。
要求:
0)請針對上述教學目標,完成下列任務:
①根據教學目標一,設計兩個問題,并說明設計意圖;(8分)
②根據教學目標二,給出一個實例,并說明設計意圖;(4分)
③根據教學目標三,設計“問題鏈"(至少包含兩個問題),并說明設計意圖。
(6分)
0)請針對“簡單隨機抽樣”的內容,回答下列問題:①這節(jié)課的教學重點
是什么?(4分)
②作為高中階段“統(tǒng)計”學習的起始課,其難點是什么?(4分)
③這節(jié)課對后續(xù)哪些內容的學習有直接影響?(4分)
答案解析
一、單項選擇題
1A【解析】(1)有理數與有理數:和、差、積、商均為有理數(求商時分母不
為零)。(2)有理數與無理數:①一個有理數和一個無理數的和、差為無理數;
②一個非零有理數與一個無理數的積、商為無理數。(3)無理數與無理數:和、
差、積、商可能是有理數,也可能是無理數。故本題選Ao
2d
xacos,t,
2B【解析】由ya"t可得x+y=acos2222(2sintcost)2
sin,t+asint=a,z=a=4xy,
zasin2t
2021高中數學歷年教資考試真題含解析
所以將參數方程化為一般方程為④故選B。
z4xy。
X1
-
2
X
消
參得
得
y1到
3.D【解析】將=-代入到y(tǒng)-
32
z
ZVI2
Z收3y2,該方程是由yOz平面上的射線z氐(z>0)繞z軸旋轉得到
的,它表示以原點為頂點,以射線z抬y(z>0)為母線,以z軸為中心軸的半
錐面。故選Do
4.C【解析】矩陣的初等行(列)變換有:①交換矩陣的兩行(列);②將一個
非零數k乘到矩陣的某一行(列);③將矩陣的某一行(列)的k倍加到另一行
(列)上。若矩陣A經過上面三種初等變換得到矩陣B,則對應的行列式的關
系依次是|A|=-|B|,|A|=k|B|,|A|=|B|o即|A|=a|B|,aeR,所以|A|=0時必有舊|=0。
故選Co
5.B【解析】根據泰勒公式的展開式
352n12n1
XX[n1Xn1X
sinxw=x——1所以
3!5!2n1!n12n1!
2n1
n11
fX1xsinx>f(1)=sin=0。故選B。
n12n1!
6.C【解析】由題意可知矩陣A可以相似對角化,且2對應兩個線性無關的
特征向量,所以2EAx。有兩個線性無關的解,即有3r2EA2
,所
111111
以r2EA=1。2EAx2yx2y要使r2EA=1,則
333000
有寸+
T,可得x=2,y=-2o故選Co
x2y
7.A【解析】直觀想象是指借助幾何直觀和空間想象感知事物的形態(tài)與變化,利
用空間形式特別是圖形,理解和解決數學問題的素養(yǎng)。主要包括:借助空間形式
認識事物的位置關系、形態(tài)變化與運動規(guī)律;利用圖形描述、分析數學問題;建
2021高中數學歷年教資考試真題含解析
立形與數的聯(lián)系,構建數學問題的直觀模型,探索解決問題的思路。④中的描述
屬于數學建模素養(yǎng)。故選Ao
8.A【解析】演繹推理是從一般規(guī)律出發(fā),運用邏輯證明或數學運算,得出特殊
事物應遵循的規(guī)律,即從一般到特殊的推理。歸納推理是由個別、特殊到一般的
推理,通過實驗結論和通過觀察猜想得到結論的推理都是歸納推理。故選A,
二、簡答題
9.【解析】(1)根據中位數的定義知,甲組脫粒數量的中位數為三上75,
2
乙組脫粒數量的中位數為為竺E68.5。
2
(2)①甲組同學脫粒數量的平均值為
(57+59+63+63+64+71+71+71+72+75+75+78+79+82+83+83+85+86+86+89)4-
20=74.6,乙組同學脫粒數量的平均值為
(50+53+57+62+62+63+65+65+67+6869+73+76+77+78+85+85+88+94+96)4-
20=71.65。根據平均數的大小比較可知,甲組脫粒速度更快。
②根據兩組數據的波動情況,能夠看出甲組數據更穩(wěn)定,乙組數據波動很大。進
而可知,甲組同學的脫粒能力差不多,而乙組同學脫粒能力存在很大的個體差異性。
ijk
10?【解析】根據直線的方程可知,直線k的方向向量ni11Q1,1,1,
121
直線L的方向向量ri22,1,1。在li中令y=0,可得L過k
Mi=(-1,0,-1),
又I2過點M2(1,-1,0),M1M22,1,1。因為混合積
111
Qn2MlM221120,即向量n-鹿,M1M2不共面,所以直線
211
Il與直線l2異面。
ijk
直線I1與直線I2的公垂線的方向向量I%n21112,1,3,
211
M1M22,1,1,則兩直線之間的距離等于向量M1M2在向量?方向上的投影的
2021高中數學歷年教資考試真題含解析
長度,即d?M1M2|2|Vl4。
-fij-E7
11.【解析】(1)設三次多項式的表達式為f(x)=a3x3+a2x2+aix+a。,根據題意
a01,
得,@3a2aia03,解得a=1,a=2,a=?1,a=1,所以f(x)=x3+2x2-x+1。
3210
8.3S2SiSo3,
8a34a22ala。15,
(2)平面上n個橫坐標不同的點唯一確定的多項式函數的最高次數是n-1。設多
n-1n2
項式g(x)=an-ix+an-2x-++a2x2+a1x+ao的圖象經過R(xnyD(i=1,2,
2
n1n2axax
Qn2X1a
an321110
2
n1n2axaxa
2X2y,,
n),則有叫空221202這是一個關于ai(i=0,
2
n1n2axaxay,
22n1n0n
1,,n-1)的非齊次線性方程組,它的系數矩陣對應的行列式為n階范德蒙德
n2n1111
1X1XiXiXXX
n12n
1XX2n1
22x2
行列式Xj為0
n2n2n21ijn
n2XiX2Xn
1XXn1
nnXnn1n1n1
Xix2Xn
因為x1<X2<<Xn,所以此行列式不等于0o由克拉默法則得,該線性方程組有
唯一解,即存在唯一的一組數句(i=0,1,,n-1)o所以由這n個點所唯一確
定的多項式函數的最高次數是n-1。
12.【參考答案】高中數學課程的基礎性的具有以下幾點含義。
①高中數學課程在課程內容上包含了數學中最基本的部分。在義務教育階段之后,
為滿足需求給學生提供更高水平的數學基礎,面向全體學生提供了學生現(xiàn)階段學
習及未來發(fā)展所需要的數學基礎知識,為學生的未來發(fā)展奠定基礎。
②高中數學課程為學生進一步學習提供了選修內容。例如,高中數學設有選修與
必修課程,必修課程是為了滿足所有學生的共同數學需求,選修系列課程是為了滿
足學生的不同數學需求,它仍然是學生發(fā)展所需要的基礎性數學課程。
③高中數學課程為學生適應未來社會生活,高等教育和職業(yè)發(fā)展等提供必需的數
學基礎。例如,大學階段理工科類的學生需要更多的數學知識,而高中數學課程
2021高中數學歷年教資考試真題含解析
為大學數學的學習提供了必備的基礎知識。
④高中數學課程也為學生學習其他學科的課程,如高中物理、化學技術等,提供
了必要的知識準備。
13.【參考答案】數學學習評價的形式多樣,主要有口頭測驗、書面測驗、開放
式問題研究、活動報告、課堂觀察、課后訪談、課內外作業(yè)、建立成長記錄袋等。
下面列舉幾種不同的評價方式進行闡述。
①口頭測驗,是指在教學過程中教師通過與學生之間的言語互動,及時地了解學
生的數學學習情況,找出問題并及時糾正。
②書面評語評價,教師對學生的作業(yè)或者其他活動報告所做的書面性的評價。評
價形式不僅僅是分數或者等級,評語一般以鼓勵為主,用以幫助學生認識與解決
問題。
③課后訪談,是指教師通過課后與學生的溝通交流了解學生數學學習情況的-種
評價方式。這種評價方式可以幫助老師更直接地了解到學生的數學學習情況
④建立成長記錄袋,了解學生的成長經歷,可以有效地幫助他們確立今后的學習
目標與方向。
三、解答題
14.【解析】(1)證明:設P(XP,yp),Q(XQ,yo)是R2上任意的兩點,則T
(P)=T((Xp,yp))=(1x1>),T(Q)=T((XQ,yQ))=(1x1y)。
-p?一P—Q,-Q
2323
d(T(P),T(Q))
11I?2
Xx11
J_p-Q-yp-yo
V2233
22
11/2
12
;
、二XpXQ-yPyQj-XpxQ-yPyQ
4
1_________2__________2_j41
1xxxxdP,Q,即存在滿足題意的所以映射T
—VPQPQ
2v22
是壓縮映射。
一D、/111
(2)由于Pn=T(Pn-1)=T(T(Pn-2)):==「(「。)=(—7Xo,-7y()),因為limrxo0,
23n2
1
m
J—y00,所以點列{Pn}收斂,且limFJ,0,0。
3n
2021高中數學歷年教資考試真題含解析
四、15.【參考答案】函數是中學數學課程的主線,同時也對應著重要的數學思
想方法,就是函數與方程的思想方法。函數思想是指用函數的概念和性質去分析
問題、轉化問題和解決問題;方程思想是從問題的數量關系入手,應用數學語言
將問題中的條件轉化為數學模型,包括方程、方程組和不等式、不等式組,然后
通過解方程或不等式來解決問題。
首先,函數與方程,中學數學課程中一元二次方程的求解問題,可以轉化為對應
函數的零點問題。方程是利用算術來從數量關系入手解決問題,函數是集合間的
映射關系,當需要計算函數值時,可以利用方程的運算方法;在求解方程時也可
以利用函數的性質和圖象。例如當y=0時,函數x的值表示函數圖象與x軸交點
的橫坐標,也就是方程的根,那么交點的數量就是方程的根的數量,也是方程的
根的判別式的判別目的。
其次,函數與不等式,用函數的觀點來看,不等式的解集就是使函數圖象y=f(x)
在x軸上方或下方的x的區(qū)域。在解不等式時可以借助函數的圖象來理解和運算,
也就是經典的線性規(guī)劃問題。
最后,函數與數列,等差數列的通項公式可以看作是關于首項和公差(公比)的
一次函數的離散化,等差數列的前n項和公式是二次函數的離散化,等比數列的
通項公式以及前n項和公式都是指數函數的離散化,因此可以將借助函數的性質
來研究數列,可以通過函數圖象和解析式來求得數列的某些值。
五、案例分析題
16【參考答案】(1)課堂提問的原則主要有以下八種,分別為:有目的性原則、
啟發(fā)性原則、適度性原則、興趣性原則、循序漸進性原則、全面性原則、充分思考
性原則、及時評價性原則。
A教師的課堂提問中遵循了目的性、循序漸進、充分思考性等幾個原則。但是違
背了啟發(fā)性、適度性、全面性、興趣性以及時評性原則。
首先是啟發(fā)性、適度性和全面性原則。教師A提出的問題普遍特點是相對比較難
的,比較抽象,適合于中等及以上的同學,沒有考慮全體學生的水平,所以,違
背了適度性和全面性原則。其次是違背了興趣性原則。教師A在教學中,例
子相對比較少,更多的是直接提問知識層面上的問題,讓學生直接思考。沒有考
慮從學生的興趣出發(fā),調動學生的積極性。最后是及時評價性原則。教師A在
整個教學中,沒有體現(xiàn)出對學生的回答及時做出評價。
2021高中數學歷年教資考試真題含解析
B教師的課堂提問中遵循了目的性、啟發(fā)性、循序漸進性、充分思考性、興趣性、
適度性、全面性等幾個原則。但是沒有遵循及時評價性原則。教師B在整個的
教學過程中,能夠充分的利用例子,通過循序漸進的提問,幫助學生一步一步理
解函數的零點的概念以及方程的根與函數的零點之間的關系。
但在提問過程中,B教師沒有對學生的回答及時做出評價。在教學中,對學生的
表現(xiàn)進行及時的評價,這樣才能夠保證學生與教師的快速成長。
(2)A老師概念引入部分的提問沒有遵循循序漸進性的原則,問題的設置要考
慮學生的認知水平,問題的設置應該由易到難、由簡到繁。對于教師A的建議:
應該先提問:同學們,初中你是如何判斷一個方程有實數根的?(回顧之前學過
的方法)用初中的方法判斷l(xiāng)nx+2x-6=0是否有實數根嗎?(引導學生思考方程和
函數之間的關系)
B教師的概念引入雖然給出了三組實例,但還需在函數的類型上進行改進,不單
單只呈現(xiàn)一元二次方程及其對應的二次函數,還可以增加一次方程及其對應函數
讓學生進行觀察。
六、教學設計題
17.【參考答案】(1)①問題一:某校領導要了解全校學生的視力情況(近視和
不近視),隨機抽取50名學生,統(tǒng)計出這50名學生的視力情況,最后估計出全
校學生的視力情況。你會設計何種抽樣方法?你認為這種抽樣方法有什么優(yōu)缺
點?在隨機抽取的過程中應該注意什么?
問題二:假設你是一名藥品安全監(jiān)測的工作人員,要對一批藥品進行安全監(jiān)測,
你準備怎樣做?需要對研究對象進行一一調查嗎?那么,應該怎樣獲取樣本呢?
設計意圖:兩個問題的提出讓學生對于簡單隨機抽樣有一個初步了解,意識到簡
單隨機抽樣在實際生活中的廣泛應用,與我們的生活息息相關。并將抽樣調查與
普查進行對比,引導學生提出抽樣的必要性。
②實例:經消費者反映,某品牌牛奶存在細菌超標問題。針對該問題,食品衛(wèi)生
工作人員需要對該品牌牛奶進行衛(wèi)生達標檢驗。但是,若食品衛(wèi)生工作人員對該
品牌所有牛奶進行逐一檢測,將面臨巨大的工作壓力。因此,食品衛(wèi)生工作人員
只隨機抽取該品牌部分牛奶進行衛(wèi)生檢測。
2021高中數學歷年教資考試真題含解析
設計意圖:將實際生活問題作為實例進行教學,不僅可以使學生對簡單隨機抽樣
方法有更深的理解,還可以使其感受在面對總體數量較多時,簡單隨機抽樣方法
的重要性。
③師:在1936年美國總統(tǒng)選舉前,某雜志工作人員做了一次民意測驗,即調查蘭
頓和羅斯福誰將成為美國的下一屆總統(tǒng)。該調查者通過電話簿和車輛登記簿上面
的名單(只有少數富人擁有)給一大批人發(fā)了調查表,通過分析調查表數據,從
而做出預測。
問題一:該雜志工作人員運用了什么抽樣方法?研究的總體和樣本分別是什么?
該抽樣方法具有什么特征?
設計意圖:結合生活實際描述問題情境并設置問題,加深學生對簡單隨機抽樣方
法的理解,使其進一步明確簡單隨機抽樣的特征,并巧妙地為后面問題做鋪墊。
師:該雜志工作人員做出的預測是蘭頓將在選舉中獲勝。但實際情況是,羅斯福
在選舉中獲勝。
問題二:你知道該雜志的工作人員的預測為什么是錯誤的嗎?分析該工作人員的
抽樣樣本可以發(fā)現(xiàn)什么?該樣本是否具有代表性?
設計意圖:顛覆性的結果,引出抽樣問題。使學生自主思考和探究問題,可以培
養(yǎng)學生獨立思考問題的習慣以及發(fā)現(xiàn)問題的能力。
師:該抽樣樣本中涉及的調查者是富人階層,只占所有選票中的少數。所以該工
作人員所抽取的樣本不具有代表性。
問題三:結合上述實例,在運用簡單隨機抽樣方法抽取樣本時,應該注意什么?
除此之外,還應該注意什么?
設計意圖:通過實例使學生理解樣本是否具有代表性的重要性。此外,該問題進
一步開拓學生的思維,從而達到總結出簡單隨機抽樣時需要注意的問題的目的。
(2)①教學重點:了解簡單隨機抽樣方法的意義;理解簡單隨機抽樣方法的定
義;掌握簡單隨機抽樣最常用的兩種方法一一抽簽法和隨機數法。靈活選用抽樣
方法。
②教學難點:理解一些統(tǒng)計名詞;抽簽法和隨機數法的實施步驟;面對統(tǒng)計數據
時,正確判斷所選取的抽樣方法是否合適。
2021高中數學歷年教資考試真題含解析
③本節(jié)課是高中階段學習統(tǒng)計學的第一節(jié)課,統(tǒng)計是研究如何合理收集、整理、
分析數據的學科,它可以為人們制定決策提供依據。本節(jié)課對于后續(xù)學習用樣本
估計總體以及變量的相關關系有直接影響。
2021高中數學歷年教資考試真題含解析
2019下半年高中數學教師資格證真題
一、單項選擇題(本大題共8小題,每小題5分,共40分)
ax八
1.若函數f(x)=e>xU,在x=o處可導,則a,b的值是()
bsin2x,x0,
A.a=2,b=1B.a=1,b=2
C.a=-2,b=1D.a=2,b=-1
n.1
2.若函數f(x)=XSin7,X°,的一階導函數在x=0處連續(xù),則正整數n的取
0,x0
值范圍是()
A.n23B.n=2
C.n=1D.n=0
3?已知點Mi(1,2,-1),M2(1,3,0),若平面1過點Mi且垂直于MIM2,
則平面2:6x+y+18z-18=0與平面1之間的夾角是()
A.—B.—C.—D.一
6432
4.若向量a,b,c滿足a+b+c=0,那么axb=()
A.bXaB.cXb
C.bXcD.aXc
5.設n階方陣M的秩r(M)=r<n,則M的n個行向量中()
A.任意一個行向量均可由其他r個行向量線性表示
B.任意r個行向量均可組成極大線性無關組
C.任意r個行向量均線性無關
D.必有r個行向量線性性無關
6.下列變換中關于直線y=x的反射變換是()
10cossin
A.M,B.M2
01sincos
0110
C.MD.M4
31001
7.下列對向量學習意義的描述:
①有助于學生體會數學與現(xiàn)實生活和其他學科的聯(lián)系;
2021高中數學歷年教資考試真題含解析
②有助于學生理解數學運算的意義及價值,發(fā)展運算能力;
③有助于學生掌握處理幾何問題的一種方法,體會數形結合思想
④有助于學生理解數學不同內容之間存在廣泛的聯(lián)系。
其中正確的共有()
條B.2條C.3條D.4條
8.數學歸納法的推理方式屬于()
A.歸納推理B.演繹推理C.類比推理D.合情推理
二、簡答題(本大題共5小題,每小題7分,共35分)
i03
9.已知線性變換Y=AX+B,其變換矩陣A,B。
015
3
?)寫出橢圓3zi1在該變換下的曲線方程;
49
。)舉例說明在該變換條件下,什么性質不變,什么性質發(fā)生變化(例如距離、
斜率、相交等)。
In5
10.f(x)=lnx(x>0),g(x)=x1。
4
0)求曲線y=f(x)與g(x)所圍成圖形的面積;
0)求平面圖形OWyWf(x),1WxW3,繞y軸旋轉所得體積。
11.一個袋子里8個黑球,8個白球,隨機不放回連續(xù)取球5個,每次取出1個球,
求最多取到3個白球的概率。
12.數學文化是指數學的思想、精神、語言、方法、觀點,以及它們的形成和發(fā)
展,還包括數學在人類生活、科學技術、社會發(fā)展中的貢獻和意義,以及與數學
相關的人文活動。請你給出數學教學中融入數學文化的兩個事例。
13.簡述數學建模的過程。
三、解答題(本大題共1小題,10分)
14.f(x)在[a,b]上連續(xù),且f(a)?f(b)<0,請用二分法證明f(x)=0在
區(qū)間[a,b]上至少有一個根。
四、論述題(本大題共1小題,15分)
15.有人說,當前數學教學欠缺的是思維能力的培養(yǎng),請談談你的看法,并給出
2021高中數學歷年教資考試真題含解析
具體的教學建議。
五、案例分析題(本大題共1小題,20分)
16.案例:
在學習了“直線與圓的位置關系”后,教師要求學生解決如下問題:
22
求過點P(2,3)且與圓O:(X-1)+y=1相切的直線I的方程。
一位學生給出的解法如下:
2
由圓。:(X-1)+y2=1知,圓心0(1,0),半徑為1,設直線I的斜率為k,
22
則其方程為y-3=k(x-2),即kx-y-2k+3=0?因為直線I與圓O:(x-1)+y=i
相切,所以圓心O到直線I的距離dJ解得k=f,所以,所求直
丙3
線I的方程為4x-3y+1=0o
問題:
。)指出上述解法的錯誤之處,分析錯誤原因,并給出兩種正確解法;(14
分)
。)針對該題的教學,談談如何設置問題,幫助學生避免上述錯誤。(6分)
六、教學設計題(本大題共1小題,30分)
17.《普通高中數學課程標準》(2017年版)對“導數的概念及其意義”提出的學
習要求為:①通過實例分析,經歷由平均變化率過渡到瞬時變化率的過程,了
解導數概念的實際背景,知道導數是關于瞬時變化率的數學表達,體會導數的內
涵與思想。
②體會極限思想。
③通過函數圖象直觀理解導數的幾何意義。
請針對“導數的概念及其意義”,以達到學習要求①為目的,完成下列教學設計:
。)寫出教學重點;(6分)
0)寫出教學過程(只要求寫出新課導入,概念的形成與鞏固等過程)及設
計意圖。(24分)
2021高中數學歷年教資考試真題含解析
答案
一、單項選擇題
ax
1.A【解析】f(x)在x=0處可導,所以f(x)在x=0處必連續(xù),b+sin2x=limeb1,
xo
由可導性質可知limfxlimfx,所以limaeaxlim2cos2x,a=2。故選
x0x0x0x0
Ao
nx111sin110.
2.A【解析】fxxC°Sx,X由題意可知fx在x=0處連
0,x0,
續(xù),所以limfx0,當且僅當n=3時成立。故選A。
xo
3.B【解析】MIM20,1,1>設平面1的一點到點Mi的向量為a=(x-1,y-2,
z+1),二者垂直,則(x-1)X0+(y-2)X1+(z+1)X1=0,整理得y+z-1=0,
平面2:6x+y+18z-18=0,法向量為n26,1,18,平面3:y+z-1=0,法向量為
n30,1,1,可得cos普普近,可知只有B項符合題意。
|n211n31<2,3612
4.C【解析】a+b+c=0,則a+c=-b,所以(a+c)Xb=-bxb=0,貝!]a義b+c
Xb=0,所以axb=-cXb=bXc。故選C。
5.D【解析】由題意知r(m)=r<n,由矩陣性質可知必然有r個行向量線性無關,
A錯;只有極大無關組中行向量才能由其它向量表示,B錯;線性無關才可以,
任意r個行向量不能保證線性無關,C錯。故選D。
6.C【解析】在平面任取一點P(x,y),點P關于y=x的對稱點Px.y,由
X望y
乙"Xf)*1V
點關于直線對稱點公式得2xu。故選C。
y2丫y1oy
7.D【解析】向量理論具有神奇的數學內涵,豐富的物理背景,向量既是代數研
究對象也是幾何研究對象,是溝通凡何和代數的橋梁。向量是描述直線、曲線、
平面以及高維空間數學問題的基本工具,是進一步學習和研究其他數學領域問題
的基礎,在解決實際問題中發(fā)揮重要作用。故選D。
8.B【解析】數學歸納法是一種證明方法,是一種演繹推理方法,它的基本思想
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年小學統(tǒng)計試題及答案
- 2025年小學科目二答案及試題
- 2025年小學生心理學考試真題及答案
- 2025年小學教材面試題及答案
- 2025四川語文高考試題及答案
- 2025年小學奧數運算試題及答案
- 2025中信證券風險評估測試題及答案
- 2025中德證券測試題及答案
- 2025證券協(xié)會面試題及答案
- 2025公務員臨選試題及答案
- 校園突發(fā)事件與應急管理
- 多重耐藥菌感染的預防與控制優(yōu)秀課件
- 商鋪銷售基礎知識培訓.(太全了)
- SH/T 0316-1998石油密度計技術條件
- GA 1301-2016火災原因認定規(guī)則
- 質量控制計劃
- TTT培訓師培訓課件(-)
- 學校學生健康體檢知識培訓課件
- 常用分析質量控制圖課件
- 醫(yī)療、預防、保健機構的擬聘用證明
- 經頸靜脈肝內門體分流術(TIPS)的護理課件
評論
0/150
提交評論