2023年函數(shù)的概念的說課稿(五篇)_第1頁
2023年函數(shù)的概念的說課稿(五篇)_第2頁
2023年函數(shù)的概念的說課稿(五篇)_第3頁
2023年函數(shù)的概念的說課稿(五篇)_第4頁
2023年函數(shù)的概念的說課稿(五篇)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

本文格式為Word版,下載可任意編輯——2023年函數(shù)的概念的說課稿(五篇)范文為教學(xué)中作為模范的文章,也往往用來指寫作的模板。往往用于文秘寫作的參考,也可以作為演講材料編寫前的參考。相信大量人會(huì)覺得范文很難寫?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧

函數(shù)的概念的說課稿篇一

函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡單類型的函數(shù)上,把函數(shù)看成變量之間的依靠關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依靠關(guān)系,更是從“變量說〞到“對應(yīng)說〞,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。

本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

二、重難點(diǎn)分析

根據(jù)對上述對教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)當(dāng)是本章的難點(diǎn)。

三、學(xué)情分析

1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

2、不利因素:函數(shù)在初中雖已講過,不過較為短淺,本課主要是從兩個(gè)集合間對應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。

四、目標(biāo)分析

1、理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。

2、通過對實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及規(guī)律思維、建模等方面的能力。

3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,摸索問題,不斷超越的創(chuàng)新品質(zhì)。

五、教法學(xué)法

本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動(dòng)的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)摸索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)〞設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程。

學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步把握它們的求法。

六、教學(xué)過程

(一)創(chuàng)設(shè)情景,引入新課

情景1:提供一張表格,把上次運(yùn)動(dòng)會(huì)得分前10的狀況填入表格,我報(bào)名次,學(xué)生提供分?jǐn)?shù)。

名次(得分)

情景2:汽車的行駛速度為時(shí)過早80千米/小時(shí),汽車行駛的距離y與行駛時(shí)間x之間的關(guān)系式為:y=80x

情景3:某市一天24小時(shí)內(nèi)的氣溫變化圖:(圖略)

提問(1):這三個(gè)例子中都涉及到了幾個(gè)變化的量?(兩個(gè))

提問(2):當(dāng)其中一個(gè)變量取值確定后,另一個(gè)變量將如何?(它的值也隨之唯一確定)

提問(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題

[設(shè)計(jì)意圖]在創(chuàng)設(shè)本課開頭情境1、2的時(shí)候,我并沒有運(yùn)用書中的前兩個(gè)例子。第一個(gè)例子我改成提供給學(xué)生一張運(yùn)動(dòng)會(huì)成績統(tǒng)計(jì)單。是為了創(chuàng)設(shè)和學(xué)生或者生活相近的情境,從而引起學(xué)生的興趣,調(diào)理課堂氣氛,引人入勝,其次個(gè)例子我改成一道簡單的速度與時(shí)間問題,是由于學(xué)生對重力加速度的問題還不是很熟悉。同時(shí)這兩個(gè)例子并沒有改變課本用三個(gè)實(shí)例分別代表三種表示函數(shù)方法的意圖。這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認(rèn)知特點(diǎn)。

(二)摸索新知,形成概念

1、引導(dǎo)分析,探求特征

思考:如何用集合的語言來闡述上述三個(gè)問題的共同特征?

[設(shè)計(jì)意圖]并不急著讓學(xué)生回復(fù)此問,為引導(dǎo)學(xué)生改變思路,換個(gè)角度思考問題,進(jìn)入本節(jié)課的重點(diǎn)。這里也是教師作為教學(xué)的引導(dǎo)者的表達(dá),及時(shí)對學(xué)生進(jìn)行指引。

提問(4):觀測上述三問題,它們分別涉及到了哪些集合?(每個(gè)問題都涉及到了兩個(gè)集合,具體略)

[設(shè)計(jì)意圖]引導(dǎo)學(xué)生觀測,培養(yǎng)觀測問題,分析問題的能力。

提問(5):兩個(gè)集合的元素之間具有怎樣的關(guān)系?(對應(yīng))

及時(shí)給出單值對應(yīng)的定義,并嘗試用輸入值,輸出值的概念來表達(dá)這種對應(yīng)。

2、抽象歸納,引出概念

提問(6):現(xiàn)在你能從集合角度說說這三個(gè)問題的共同點(diǎn)嗎?

[設(shè)計(jì)意圖]學(xué)生相互探討,并回復(fù),引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。

板書:函數(shù)的概念

上述一系列問題,始終在學(xué)生知識的“最近發(fā)展區(qū)〞,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng),生生互動(dòng)中,在學(xué)生心情愉悅的氣氛中,突破本節(jié)課的重點(diǎn)。

3、探求定義,提出注意

提問(7):你覺得這個(gè)定義中應(yīng)注意哪些問題?

[設(shè)計(jì)意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。

4、例題剖析,加強(qiáng)概念

例1、判斷以下對應(yīng)是否為函數(shù):

[設(shè)計(jì)意圖]通過例1的教學(xué),使學(xué)生體會(huì)單值對應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。

例2、(1);(2)y=x-1;(3);[設(shè)計(jì)意圖]首先對求函數(shù)的定義域進(jìn)行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強(qiáng)調(diào)只有對應(yīng)法則與定義域一致的兩個(gè)函數(shù),才是一致的函數(shù)。而與函數(shù)用什么字母表示無關(guān),進(jìn)一步理解函數(shù)符號的本質(zhì)內(nèi)涵。

例3、試求以下函數(shù)的定義域與值域:

[設(shè)計(jì)意圖]讓學(xué)體會(huì)理解函數(shù)的三要素。

5、穩(wěn)定練習(xí),運(yùn)用概念

書本練習(xí)p24:1,2,3,4

6、課堂小結(jié),提升思想

引導(dǎo)學(xué)生進(jìn)行回想,使學(xué)生對本節(jié)課有一個(gè)整體把握,將對學(xué)生形成的知識系統(tǒng)產(chǎn)生積極的影響。

七、教學(xué)評價(jià)

1、我通過對一系列問題情景的設(shè)計(jì),讓學(xué)生在問題解決的過程中體驗(yàn)成功的樂趣,實(shí)現(xiàn)對本課重難點(diǎn)的突破。

2、為使課堂形式更加豐富,也可將某些問題改成判斷題。

3、在學(xué)生分析、歸納、建構(gòu)概念的過程中,可能會(huì)出現(xiàn)理解的偏差,教師應(yīng)給予恰當(dāng)?shù)氖崂?/p>

4。本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景。

函數(shù)的概念的說課稿篇二

一、說課內(nèi)容:

人教版九年級數(shù)學(xué)下冊的二次函數(shù)的概念及相關(guān)習(xí)題

二、教材分析:

1、教材的地位和作用

這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最終一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。

2、教學(xué)目標(biāo)和要求:

(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,把握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。

(2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的摸索過程,提高學(xué)生解決問題的能力.(3)情感、態(tài)度與價(jià)值觀:通過觀測、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,加強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.3、教學(xué)重點(diǎn):對二次函數(shù)概念的理解。

4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。

三、教法學(xué)法設(shè)計(jì):

1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程

2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢教學(xué)過程

3、利用摸索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程

四、教學(xué)過程:

(一)復(fù)習(xí)提問

1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?

(一次函數(shù),正比例函數(shù),反比例函數(shù))

2.它們的形式是怎樣的?

(y=kx+b,ky=kx,ky=,k0)

3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k0的條件?k值對函數(shù)性質(zhì)有什么影響?

復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強(qiáng)調(diào)k0的條件,以備與二次函數(shù)中的a進(jìn)行比較.(二)引入新課

函數(shù)是研究兩個(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)

例1、(1)圓的半徑是r(cm)時(shí),面積s(cm2)與半徑之間的關(guān)系是什么?

解:s=0)

例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m2)與矩形一邊長x(m)之間的關(guān)系是什么?

解:y=x(20/2-x)=x(10-x)=-x2+10x(0

例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。假使存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?

解:y=100(1+x)2

=100(x2+2x+1)

=100x2+200x+100(0

教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何一致點(diǎn)與不同點(diǎn)?

通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀測,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系:(1)函數(shù)解析式均為整式(這說明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

(三)講解新課

以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。

穩(wěn)定對二次函數(shù)概念的理解:

1、強(qiáng)調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r0)

3、為什么二次函數(shù)定義中要求a?

(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)

4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.5、b和c是否可以為零?

由例1可知,b和c均可為零.若b=0,則y=ax2+c;

若c=0,則y=ax2+bx;

若b=c=0,則y=ax2.注明:以上三種形式都是二次函數(shù)的特別形式,而y=ax2+bx+c是二次函數(shù)的一般形式.這里強(qiáng)調(diào)對二次函數(shù)概念的理解,有助于學(xué)生更好地理解,把握其特征,為接下來的判斷二次函數(shù)做好鋪墊。

判斷:以下函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.(1)y=3(x-1)2+1(2)

(3)s=3-2t2(4)y=(x+3)2-x2

(5)s=10r2(6)y=22+2x

(8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))

理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應(yīng)用到實(shí)踐操作中。

(四)穩(wěn)定練習(xí)

1.已知一個(gè)直角三角形的兩條直角邊長的和是10cm。

(1)當(dāng)它的一條直角邊的長為4.5cm時(shí),求這個(gè)直角三角形的面積;

(2)設(shè)這個(gè)直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)

于x的函數(shù)關(guān)系式。

此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。

2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。

(1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;

(2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?

簡單的實(shí)際問題,學(xué)生會(huì)很簡單列出函數(shù)關(guān)系式,也很簡單分辯出哪個(gè)是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長為ccm,圓柱的體積為vcm3

(1)分別寫出c關(guān)于r;v關(guān)于r的函數(shù)關(guān)系式;

(2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?

此題要求學(xué)生熟記圓柱體積和底面周長公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識聯(lián)系起來。

4.籬笆墻長30m,靠墻圍成一個(gè)矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.此題較前面幾題稍微繁雜些,旨在讓學(xué)生能夠開動(dòng)腦筋,積極思考,讓學(xué)生能夠跳一跳,夠得到。

(五)拓展延伸

1.已知二次函數(shù)y=ax2+bx+c,當(dāng)x=0時(shí),y=0;x=1時(shí),y=2;x=-1時(shí),y=1.求a、b、c,并寫出函數(shù)解析式.在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個(gè)鋪墊。

2.確定以下函數(shù)中k的值

(1)假使函數(shù)y=xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______

(2)假使函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______

此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.(六)小結(jié)思考:

本節(jié)課你有哪些收獲?還有什么不明白的地方?

讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不明白的地方,以便在今后的教學(xué)中補(bǔ)充。

(七)作業(yè)布置:

必做題:

1.正方形的邊長為4,假使邊長增加x,則面積增加y,求y關(guān)于x的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?

2.在長20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

選做題:

1.已知函數(shù)是二次函數(shù),求m的值。

2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象

作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),表達(dá)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

五、教學(xué)設(shè)計(jì)思考

以實(shí)現(xiàn)教學(xué)目標(biāo)為前提

以現(xiàn)代教育理論為依據(jù)

以現(xiàn)代信息技術(shù)為手段

貫穿一個(gè)原則以學(xué)生為主體的原則

突出一個(gè)特色充分勉勵(lì)表揚(yáng)的特色

滲透一個(gè)意識應(yīng)用數(shù)學(xué)的意識

函數(shù)的概念的說課稿篇三

尊敬的各位評委、老師們:

大家好!

今天我說課的內(nèi)容是《函數(shù)的概念》,選自人教版高中數(shù)學(xué)必修一第一章其次節(jié)。下面介紹我對本節(jié)課的設(shè)計(jì)和構(gòu)思,請您多提寶貴看法。

我的說課有以下六個(gè)部分:

一、背景分析

1、學(xué)習(xí)任務(wù)分析

本節(jié)課是必修1第1章第2節(jié)的內(nèi)容,是函數(shù)這一章的起始課,它上承集合,下引性質(zhì),與方程、不等式、數(shù)列、三角函數(shù)、解析幾何、導(dǎo)數(shù)等內(nèi)容聯(lián)系密切,是學(xué)好后繼知識的基礎(chǔ)和工具,所以本節(jié)課在數(shù)學(xué)教學(xué)中的地位和作用是至關(guān)重要的。

2、學(xué)情分析

學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù)的概念,初步具備了學(xué)習(xí)函數(shù)概念的基本能力,但函數(shù)的概念從初中的變量學(xué)說到高中階段的對應(yīng)說很抽象,不易理解。

另外,通過對集合的學(xué)習(xí),學(xué)生基本適應(yīng)了有效教學(xué)的課堂模式,初步具備了小組合作、自主探究的學(xué)習(xí)能力。

基于以上的分析,我認(rèn)為本節(jié)課的教學(xué)重點(diǎn)為:函數(shù)的概念以及構(gòu)成函數(shù)的三要素;

教學(xué)難點(diǎn)為:函數(shù)概念的形成及理解。

二、教學(xué)目標(biāo)設(shè)計(jì)

根據(jù)《課程標(biāo)準(zhǔn)》對本節(jié)課的學(xué)習(xí)要求,結(jié)合本班學(xué)生的狀況,故而確立本節(jié)課的教學(xué)目標(biāo)。

1、知識與技能(方面)

通過豐富的實(shí)例,讓學(xué)生

①了解函數(shù)是非空數(shù)集到非空數(shù)集的一個(gè)對應(yīng);

②了解構(gòu)成函數(shù)的三要素;

③理解函數(shù)概念的本質(zhì);

④理解f(x)與f(a)(a為常數(shù))的區(qū)別與聯(lián)系;

⑤會(huì)求一些簡單函數(shù)的定義域。

2、過程與方法(方面)

在教學(xué)過程中,結(jié)合生活中的實(shí)例,通過師生互動(dòng)、生生互動(dòng)培養(yǎng)學(xué)生分析推理、歸納總結(jié)和表達(dá)問題的能力,在函數(shù)概念的構(gòu)建過程中體會(huì)類比、歸納、猜想等數(shù)學(xué)思想方法。

3、情感、態(tài)度與價(jià)值觀(方面)

讓學(xué)生充分體驗(yàn)函數(shù)概念的形成過程,參與函數(shù)定義域的求解過程以及函數(shù)的求值過程,使學(xué)生感受到數(shù)學(xué)的抽象美與簡單美。

三、課堂結(jié)構(gòu)設(shè)計(jì)

為充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,變被動(dòng)學(xué)習(xí)為主動(dòng)愉快的探究,我使用有效教學(xué)的課堂模式,課前學(xué)生通過結(jié)構(gòu)化預(yù)習(xí),完成問題生成單,課中采用師生互動(dòng)、小組探討、學(xué)生展寫、展講例題,教師點(diǎn)評的方式完成問題解決單,課后完成問題拓展單,課堂結(jié)構(gòu)包含:

復(fù)習(xí)舊知,引出課題(約2分鐘)創(chuàng)設(shè)情境,形成概念(約5分鐘)剖析概念(約12分鐘)例題分析,穩(wěn)定知識——小組探討,展寫例題(約8分鐘)小組展講,教師點(diǎn)評(約10分鐘)總結(jié)反思,知識升華(約2分鐘)(最終)布置作業(yè),拓展練習(xí)。

四、教學(xué)媒體設(shè)計(jì)

教學(xué)中利用投影與黑板相結(jié)合的形式,利用投影直觀、生動(dòng)地展示實(shí)例,并能增加課堂容量;利用黑板列舉本節(jié)重要內(nèi)容,使學(xué)生對所學(xué)內(nèi)容有一整體認(rèn)識,并讓學(xué)生利用黑板展寫、展講例題,有問題及時(shí)發(fā)現(xiàn)及時(shí)解決。

五、教學(xué)過程設(shè)計(jì)

本節(jié)課圍繞問題的解決與重難點(diǎn)的突破,設(shè)計(jì)了下面的教學(xué)過程。

整個(gè)教學(xué)過程按四個(gè)環(huán)節(jié)展開:

首先,在第一環(huán)節(jié)——復(fù)習(xí)舊知,引出課題,先由兩個(gè)問題導(dǎo)入新課

①初中時(shí)函數(shù)是如何定義的?

②y=1是函數(shù)嗎?

[設(shè)計(jì)意圖]:學(xué)生通過對這兩個(gè)問題的思考與探討,發(fā)現(xiàn)利用初中的定義很難回復(fù)第②個(gè)問題,從而激起他們的好奇心:高中階段的函數(shù)概念會(huì)是什么?激發(fā)他們學(xué)習(xí)本節(jié)課的猛烈愿望和情感,使他們處于積極主動(dòng)的探究狀態(tài),大大提高了課堂效率。

從學(xué)生的心理狀態(tài)與認(rèn)知規(guī)律出發(fā),教學(xué)過程自然過渡到其次個(gè)環(huán)節(jié)——函數(shù)概念的形成。

由于高中階段的函數(shù)概念本身比較抽象,看不見也摸不著,不易直接給出,因此在本環(huán)節(jié)中,我主要通過學(xué)生能看見能感知的生活中的3個(gè)實(shí)例出發(fā),由具體到抽象,由特別到一般,一步步歸納形成函數(shù)的概念,此過程我稱之為“創(chuàng)設(shè)情境,形成概念〞。

對于這3個(gè)實(shí)例,我分別預(yù)設(shè)一個(gè)問題讓學(xué)生思考與體會(huì)。

問題1:從炮彈發(fā)射到落地的0-26s時(shí)間內(nèi),集合a是否存在某一時(shí)間t,在b中沒有高度h與之對應(yīng)?是否有兩個(gè)或多個(gè)高度與之相對應(yīng)?

問題2:從1979—20xx年,集合a是否存在某一時(shí)間t,在b中沒有面積s與之對應(yīng)?是否有兩個(gè)或多個(gè)面積與它相對應(yīng)嗎?

問題3:從1991—20xx年間,集合a中是否存在某一時(shí)間t,在b中沒恩格爾系數(shù)與之對應(yīng)?是否會(huì)有兩個(gè)或多個(gè)恩格爾系數(shù)與對應(yīng)?

[設(shè)計(jì)意圖]:通過循序漸進(jìn)地提問,變教為誘,以誘達(dá)思,引導(dǎo)學(xué)生根據(jù)問題總結(jié)3個(gè)實(shí)例的各自特點(diǎn),并綜合各自特點(diǎn),歸納它們的公共特征,著重向?qū)W生滲透集合與對應(yīng)的觀點(diǎn),這樣,再讓學(xué)生經(jīng)歷由具體到抽象的概括過程,用集合、對應(yīng)的語言來描述函數(shù)時(shí)就顯得水到渠成,難點(diǎn)得以突破。

函數(shù)的概念既已形成,本節(jié)課自然進(jìn)入了第3個(gè)環(huán)節(jié)——剖析概念,理解概念。

函數(shù)概念的理解是本節(jié)課的重點(diǎn)也是難點(diǎn),概念本身比較抽象,學(xué)生在理解上可能把握不確鑿,所以我分兩個(gè)步驟來進(jìn)行剖析,由具體到抽象,螺旋上升。

首先,在學(xué)生熟讀熟背函數(shù)概念的基礎(chǔ)上,我設(shè)計(jì)一個(gè)學(xué)生活動(dòng),讓學(xué)生充分參與,在參與中體會(huì)學(xué)習(xí)的開心。

我利用多媒體制作一個(gè)表格,請學(xué)號為01—05的同學(xué)填寫自己上次的數(shù)學(xué)考試成績,并提出3個(gè)問題:

問題1:若學(xué)號構(gòu)成集合a,成績構(gòu)成集合b,對應(yīng)關(guān)系f:上次數(shù)學(xué)考試成績,那么由a到b能否構(gòu)成函數(shù)?

問題2:若將問題1中“學(xué)號〞改為“01—05的學(xué)生〞,其余不變,那么由a到b能否構(gòu)成函數(shù)?

問題3:若學(xué)號04的學(xué)生上次考試因病缺考,無成績,那么對問題1學(xué)號與成績能否構(gòu)成函數(shù)?

[設(shè)計(jì)意圖]:通過層層提問,層層回復(fù),讓學(xué)生對概念中關(guān)鍵詞的把握更為確鑿,對函數(shù)概念的理解更為具體,為總結(jié)歸納函數(shù)概念的本質(zhì)特征打下基礎(chǔ)。

其次,我通過幻燈片的形式展示幾組數(shù)集的對應(yīng)關(guān)系,讓學(xué)生分析探討哪些對應(yīng)關(guān)系能構(gòu)成函數(shù),在學(xué)生深刻認(rèn)識到函數(shù)是非空數(shù)集到非空數(shù)集的一對一或多對一的對應(yīng)關(guān)系,并能確鑿把握概念中的關(guān)鍵詞后,再著重強(qiáng)強(qiáng)在這兩種對應(yīng)關(guān)系中,何為定義域,何為值域,值域和集合b有什么關(guān)系,強(qiáng)調(diào)函數(shù)的三要素,得出兩函數(shù)相等的條件。

至此,本節(jié)課的第三個(gè)環(huán)節(jié)已經(jīng)完成,對于區(qū)間的概念,學(xué)生通過預(yù)習(xí)能夠理解課堂上不再多講,僅在多媒體上進(jìn)行展示,但會(huì)在后面例題的使用中指出本卷須知。

在本節(jié)課的第四個(gè)環(huán)節(jié)——例題分析中,我重點(diǎn)以例題的形式考察函數(shù)的有關(guān)概念問題,簡單函數(shù)的定義域問題以及函數(shù)的求值問題,至于分段函數(shù)、復(fù)合函數(shù)的求值及定義域問題,將在下節(jié)課予以解決,本環(huán)節(jié)主要通過學(xué)生探討、展寫、展講、學(xué)生互評、教師點(diǎn)評的方式完成知識的穩(wěn)定,讓學(xué)生成為課堂的主人。

最終,通過

——總結(jié)點(diǎn)評,完善知識體系

——課堂練習(xí),穩(wěn)定知識把握

——布置作業(yè),沉淀教學(xué)成果

六、教學(xué)評價(jià)設(shè)計(jì)

教學(xué)是動(dòng)態(tài)生成的過程,課堂上必然會(huì)有難以預(yù)料的事情發(fā)生,具體的教學(xué)過程還應(yīng)根據(jù)實(shí)際狀況加以調(diào)整。

最終,引用赫爾巴特的一句名言終止我的說課,那就是“發(fā)揮我們教師的創(chuàng)造性,使教育過程成為一種藝術(shù)的事業(yè),使我們不聰明的孩子變的聰明,使我們聰明的孩子變的更聰明〞。

感謝大家!

函數(shù)的概念的說課稿篇四

一、本課時(shí)在教材中的地位及作用

教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。本章節(jié)9個(gè)課時(shí),函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡單類型的函數(shù)上,把函數(shù)看成變量之間的依靠關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依靠關(guān)系,更是從“變量說〞到“對應(yīng)說〞,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。

本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)

二、教學(xué)目標(biāo)

理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。

通過對實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及規(guī)律思維、建模等方面的能力。

通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,摸索問題,不斷超越的創(chuàng)新品質(zhì)。

三、重難點(diǎn)分析確定

根據(jù)上述對教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)當(dāng)是本章的難點(diǎn)。

四、教學(xué)基本思路及過程

本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

⑴學(xué)情分析

一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

函數(shù)在初中雖已講過,不過較為短淺,本課主要是從兩個(gè)集合間對應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。

⑵教法、學(xué)法

1、本節(jié)課采用的方法有:

直觀教學(xué)法、啟發(fā)教學(xué)法、課堂探討法。

2、采用這些方法的理論依據(jù):我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)摸索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程,充分表達(dá)“教師為主導(dǎo),學(xué)生為主體〞的教學(xué)原則。

3、學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步把握它們的求法。

⑶教學(xué)過程

(一)創(chuàng)設(shè)情景,引入新課

情景1:提供一張表格,把本班中考得分前10名的狀況填入表格,我報(bào)名次,學(xué)生提供分?jǐn)?shù)。

情景2:西康高速汽車的行駛速度為80千米/小時(shí),汽車行駛的距離

y與行駛時(shí)間x之間的關(guān)系式為:y=80x

情景3:安康市一天24小時(shí)內(nèi)的氣溫隨時(shí)間變化圖:(圖略)

提問(1):這三個(gè)例子中都涉及到了幾個(gè)變化的量?(兩個(gè))

提問(2):當(dāng)其中一個(gè)變量取值確定后,另一個(gè)變量將如何?(它的

值也隨之唯一確定)

提問(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題

[設(shè)計(jì)意圖]在創(chuàng)設(shè)本課開頭情境1、2的時(shí)候,我并沒有運(yùn)用書中的前兩個(gè)例子。第一個(gè)例子我改成提供給學(xué)生一張中考成績統(tǒng)計(jì)單。是為了創(chuàng)設(shè)和學(xué)生生活相近的情境,從而引起學(xué)生的興趣,調(diào)理課堂氣氛,引人入勝,其次個(gè)例子我改成一道簡單的速度與時(shí)間問題,是由于學(xué)生對重力加速度的問題還不是很熟悉。同時(shí)這兩個(gè)例子并沒有改變課本用三個(gè)實(shí)例分別代表三種表示函數(shù)方法的意圖。

這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認(rèn)知特點(diǎn)。

(二)摸索新知,形成概念

1、引導(dǎo)分析,探求特征

思考:如何用集合的語言來闡述上述三個(gè)問題的共同特征?

[設(shè)計(jì)意圖]并不急著讓學(xué)生回復(fù)此問,為引導(dǎo)學(xué)生改變思路,換個(gè)角度思考問題,進(jìn)入本節(jié)課的重點(diǎn)。這里也是教師作為教學(xué)的引導(dǎo)者的表達(dá),及時(shí)對學(xué)生進(jìn)行指引。

提問(4):觀測上述三問題,它們分別涉及到了哪些集合?(每個(gè)問題都涉及到了兩個(gè)集合,具體略)

[設(shè)計(jì)意圖]引導(dǎo)學(xué)生觀測,培養(yǎng)觀測問題,分析問題的能力。

提問(5):兩個(gè)集合的元素之間具有怎樣的關(guān)系?(對應(yīng))

及時(shí)給出單值對應(yīng)的定義,并嘗試用輸入值,輸出值的概念來表達(dá)這種對應(yīng)。

2、抽象歸納,引出概念

提問(6):現(xiàn)在你能從集合角度說說這三個(gè)問題的共同點(diǎn)嗎?

[設(shè)計(jì)意圖]學(xué)生相互探討,并回復(fù),引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。

板書:函數(shù)的概念

上述一系列問題,始終倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng),生生互動(dòng)中,在學(xué)生心情愉悅的氣氛中,突破本節(jié)課的重點(diǎn)。

3、探求定義,提出注意

提問(7):你覺得這個(gè)定義中應(yīng)注意哪些問題(兩個(gè)非空數(shù)集,唯一對應(yīng)等)?

[設(shè)計(jì)意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。

2、例題剖析,加強(qiáng)概念

例1、判斷以下對應(yīng)是否為函數(shù):

(1)

(2)

[設(shè)計(jì)意圖]通過例1的教學(xué),使學(xué)生體會(huì)單值對應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。

例2、(1);

(2)y=x—1;

(3);

(4)

[設(shè)計(jì)意圖]首先對求函數(shù)的定義域進(jìn)行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強(qiáng)調(diào)只有對應(yīng)法則與定義域一致的兩個(gè)函數(shù),才是一致的函數(shù)。而與函數(shù)用什么字母表示無關(guān),進(jìn)一步理解函數(shù)符號的本質(zhì)內(nèi)涵。

例3、試求以下函數(shù)的定義域與值域:

(1)

(2)

[設(shè)計(jì)意圖]讓學(xué)體會(huì)理解函數(shù)的三要素:定義域、值域、對應(yīng)法則。

4、穩(wěn)定練習(xí),運(yùn)用概念

書本練習(xí)p25:練習(xí)1,2,3。p28:練習(xí)1,2

布置作業(yè):a組:1、2。b組1。

5、課堂小結(jié),提升思想

引導(dǎo)學(xué)生進(jìn)行回想,使學(xué)生對本節(jié)課有一個(gè)整體把握,將對學(xué)生形成的知識系統(tǒng)產(chǎn)生積極的影響。

6、板書設(shè)計(jì):借助小黑板,時(shí)間的合理分派等(略)

五、教學(xué)評價(jià)及反思

我通過對一系列問題情景的設(shè)計(jì),讓學(xué)生在問題解決的過程中體驗(yàn)成功的樂趣,實(shí)現(xiàn)對本課重難點(diǎn)的突破,教學(xué)時(shí)間分派合理,為使課堂形式更加豐富,也可將某些問題改成判斷題。在學(xué)生分析、歸納、建構(gòu)概念的過程中,可能會(huì)出現(xiàn)理解的偏差,教師應(yīng)給予恰當(dāng)?shù)氖崂怼?/p>

本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景(結(jié)合各學(xué)校的硬件條件)。

函數(shù)的概念的說課稿篇五

“說課〞有利于提高教師理論素養(yǎng)和駕馭教材的能力,也有利于提高教師的語言表達(dá)能力,因而受到廣大教師的重視,登上了教育研究的大雅之堂。以下是我整理的函數(shù)的概念說課稿,希望對大家有幫助!

尊敬的各位考官大家好,我是今天的x號考生,今天我說課的題目是《函數(shù)的概念》。

新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生特性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。

一、說教材

首先談?wù)勎覍滩牡睦斫猓逗瘮?shù)的概念》是北師大版必修一其次章2.1的內(nèi)容,本節(jié)課的內(nèi)容是函數(shù)概念。函數(shù)內(nèi)容是高中數(shù)學(xué)學(xué)習(xí)的一條主線,它貫穿整個(gè)高中數(shù)學(xué)學(xué)習(xí)中。又是溝通代數(shù)、方程、不等式、數(shù)列、三角函數(shù)、解析幾何、導(dǎo)數(shù)等內(nèi)容的橋梁,同時(shí)也是今后進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。函數(shù)學(xué)習(xí)過程經(jīng)歷了直觀感知、觀測分析、歸納類比、抽象概括等思維過程,通過學(xué)習(xí)可以提高了學(xué)生的數(shù)學(xué)思維能力。

二、說學(xué)情

接下來談?wù)剬W(xué)生的實(shí)際狀況。新課標(biāo)指出學(xué)生是教學(xué)的主體,所以要成為符合新課標(biāo)要求的教師,深入了解所面對的學(xué)生可以說是必修課。本階段的學(xué)生已經(jīng)具備了一定的分析能力,以及規(guī)律推理能力。所以,學(xué)生對本節(jié)課的學(xué)習(xí)是相對比較簡單的。

三、說教學(xué)目標(biāo)

根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):

(一)知識與技能

理解函數(shù)的概念,能對具體函數(shù)指出定義域、對應(yīng)法則、值域,能夠正確使用“區(qū)間〞符號表示某些函數(shù)的定義域、值域。

(二)過程與方法

通過實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依靠關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會(huì)對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用進(jìn)一步加深集合與對應(yīng)數(shù)學(xué)思想方法。

(三)情感態(tài)度價(jià)值觀

在自主摸索中感受到成功的喜悅,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

四、說教學(xué)重難點(diǎn)

我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容確定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是:函數(shù)的模型化思想,函數(shù)的三要素。本節(jié)課的教學(xué)難點(diǎn)是:符號“y=f(x)〞的含義,函數(shù)定義域、值域的區(qū)間表示,從具體實(shí)例中抽象出函數(shù)概念。

五、說教法和學(xué)法

現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必需以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的心理特征與認(rèn)知規(guī)律以問題為主線,我采用啟發(fā)法、講授法、小組合作、自主探究等教學(xué)方法。

六、說教學(xué)過程

下面我將重點(diǎn)談?wù)勎覍虒W(xué)過程的設(shè)計(jì)。

(一)新課導(dǎo)入

首先是導(dǎo)入環(huán)節(jié),提問:關(guān)于函數(shù)你知道什么?在初中階段對函數(shù)是如何下定義的?你能否舉一個(gè)例子。從而引出本節(jié)課的課題《函數(shù)概念》。

利用初中的函數(shù)概念進(jìn)行導(dǎo)入,拉近學(xué)生與新知識之間的距離,幫助學(xué)生進(jìn)一步完善知識框架行程知識體系。

(二)新知摸索

接下來是教學(xué)中最重要的新知摸索環(huán)節(jié),我主要采用講解法、小組合作、自主探究法等。

首先利用多媒體展示生活實(shí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論