




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ElasticityABriefLectureNote(Incomplete)
GuidelinesThelectureswillbegiveninChinese,buttheLectureNoteswillbewritteninEnglish(well,ratherinformalEnglish).ThebilingualapproachisanticipatedtooffersurprisingadvantagessuchasloweringthelanguagebarrierandgettingfamiliarwithEnglishvocabulariesthatwillbeindesperateuseintheyearstocome.Ialsoforeseethepotentialtoexpandthelecturenotestoaformallywritingtextbook.Thecontentsareselectedtohighlightthephysicalinsightsofelasticity,topromotethereadabilitybyfrequentlycitingthehistoriceventsandperspectives,enumeratingthenewapplicationsofelasticity,andaddressingthenewresearchthrustsofelasticityinthepast50years.Thelectureswillbegivenmainlyinatraditionalwayofchalksplusblackboard.ForacoursewithaperfectlogicsystemsuchasElasticity,Icannotfindabetterwayotherthantheoldtradition.Lettheimaginativemindsofthestudentsfollowthetraceofachalktiponblackboard.Besidelectures,thecourseshouldbecomplementedthroughintensivereadings.Twelvereferencesareappointed.Discussionsamongstudentsabouttheircontentsareencouraged.Thehomeworkwilltake20%oftheoverallscore,themid-termexamanother20%,whilethefinalexam(openbook)willtaketherest60%.Forthosestudentswhoareeagertoexploremorechallengingissuesofelasticity,atotalof10to15advancedproblemswillbeproposed.Astudentmaysolveanyoneoftheseproblems,writeintheformofareport,andsubmitittotheinstructor.Thesereportswillbegradedbytheinstructor,andthosescoredhigherthan90/100canbeusedassubstitutesfortheirfinalexams.Onlythereportsthatsolvetheproblemearliestamongtheentireclassorsolvetheprobleminauniqueapproacharequalifiedasthesubstitutesofthefinalexams.
WhoCares?Elasticityisthemostimportantcourseinthefieldofsolidmechanics,andalsotopsthelistforthekeycoursesinabroaderareaofengineeringmechanics.Elasticitygoesalongwayinitsapplications,spanninglengthscalesfromnanometersforacarbonnanotubetokilometersofageologicalformation.Withoutthemasteryofelasticity,youareincompetentindoinganyseriousworksasaprofessionalinengineeringmechanics,evennotrankedasacapableengineer.Besideitscontents,elasticityisacoursethatexemplifiesthebeautyofmathematicalphysics.Manyconceptsandmethodsinmodernscienceandengineeringareoriginatedfromelasticity.However,elasticityisalsoaquitedifficultcoursetolearn,pleasebepreparedforit.Youdefinitelyneedtospend5timesasthelecturehourstograspthematerials.Withoutcompetitors,itwillbeTheCoursethatburdensyouthemostinthissemester.AsoneoftheelitecoursesinTsinghuaUniversity,weareplanningafeastofmaterialsthatwouldbeunparallelinthemostuniversitiesintheworld(theexceptionsareMITandEcolPre-requestThestudentsarerequiredtohavefirstcoursesonCalculus,MathematicalPhysics(includingtheintroductiononComplexAnalysis,OperationalCalculus,andPDE)andStrengthofMaterials.WealsoassumeyouhaveapreliminaryknowledgeonContinuumMechanics,familiarwiththeconceptsofstress,strainandbalancelaws.Theknowledgeontheindicialnotationoftensorsisalsoassumed.Forthosestudentswhoarelackofthispreliminaryknowledge,wesuggestthemtoreadthefirstfourchaptersandtherelevantappendicesinthetextbookbyLuandLuo.
ContentsIntroduction1.1 HistoryofElasticity1.2 ApplicationsofElasticity2. ElasticityofSolids2.1 DefinitionofElasticity2.2 TwoPhysicalOriginsofElasticity2.3 TensorDescriptionofElasticity2.4 PhysicalFoundationofElasticSymmetry3. FieldEquationsofElasticity-DifferentialFormulation3.1 BalanceEquationsofMomentumandMoment3.2 CompatibilityEquation3.3 FieldEquationsofDynamicElasticity3.4 Quasi-staticFieldEquations3.5 Constraints3.6 BoundaryConditions3.7 FormulationofElasticity4. PrismaticRods4.1 FormulationforPrismaticRods4.2 UniaxialTensionandPureBending4.3 CorrectiveSolution(SaintVenantDecay)4.4 FreeTorsionofPrismaticRods4.5 InverseandSemi-inverseSolutions4.6 FormulationofAnti-planeProblems5. PlaneProblems–TheoryandMethods5.1 PlaneStrainandPlaneStress5.2 PlanarAnisotropicCase5.3 PlanarIsotropicCase–BiharmonicEquation5.4 SolutioninCartesianCoordinates5.5 SolutioninPolarCoordinates5.6 Kolosov-MuskhelishvilliMethod6. PlaneProblems–Applications6.1 StressConcentration6.2 CurvedBeams6.3 Wedges6.4 PointForceandCouples6.5 ContactandIndentation6.6 Dislocations6.7 VoidsandInclusions6.8 Mismatch6.9 Singularities6.10 Interfaces7. VariationalFormulationofElasticity7.1 BasicConceptsofVariation7.2 WeakSolutions7.3 PrincipleofVirtualWork7.4 VariationalPrinciples7.5 NumericalMethodsBasedonEnergyPrinciples8. ThreeDimensionalProblemsinElasticity8.1 SolutionsbyDisplacementPotentials8.2 BoussinesqSolution8.3 SingularitySolution8.4 EshelbySolution8.5 DislocationLoopsReviewReferences陸明萬、羅學(xué)富《彈性理論基礎(chǔ)》,清華大學(xué)出版社,1990J.R.Barber,Elasticity,KluwerAcademicPublisher,Boston,1992S.P.TimoshenkoandJ.N.Goodier,TheoryofElasticity,3rdEdition,McGraw-Hill,1969H.Love,ATreatiseontheMathematicalTheoryofElasticity,4thDoverEdition,1944A.E.GreenandW.Zerna,TheoreticalElasticity,OxfordN.I.Muskhelishvilli,SomeBasicProblemsinMathematicalTheoryofElasticity,NoordhoffInt.,1977M.E.Gurtin,ContinuumMechanics,AcademicPress,1981J.E.MarsdenandT.J.R.Hughes,MathematicalFoundationsofElasticity,PrenticeHallInc,1983武際可,力學(xué)史,重慶大學(xué)出版社,1999楊衛(wèi),宏微觀斷裂力學(xué),1995,國防工業(yè)出版社,第1章W.YangandW.B.Lee,MesoplasticityandItsApplications,1993,Springer-VerlagT.C.T.Ting,AnisotropicElasticity:TheoryandApplications,1996,Oxford
Introduction1.1 HistoryofElasticityReferencesS.P.Timoshenko,Historyofstrengthofmaterial,Dover,1953R.Dugas,Ahistoryofmechanics,Dover,1955武際可,力學(xué)史,重慶大學(xué)出版社,1999Mechanicssymbolizesthefirstglimpseofscientificunderstandingofthehumanbeingforthephysicalworld.Mechanicsformsthebackboneofscienceandengineering.Mechanicspavesthefoundationfortheinfrastructuresofnumerouscitiesintheworld. LIUQi,MayorofBeijing,InvitationLetterforICTAM2008BeijingEraoftheExploration(1600-1700)ElasticitydevelopedintheoutpouringofmathematicalandphysicsstudiesfollowingtheeraofNewton,althoughithasearlierroots.Theneedtounderstandandcontrolthefractureseemstohavebeenafirstmotivation.LeonardodaVincisketchedinhisnotebooksapossibletestofthetensilestrengthofawirethatmightbecrucialinhanginghispaintings.Hewasawareofthepossiblelengthdependenceofthewirestrengthduetostatisticaldefectsdistribution.TheclassicalmechanicsissometimeslabeledGalileo-Newtonmechanics.Thereasonisquiteclear.Galileo,whodiesintheyearofNewton’sbirth(1642),proposedthePrincipleofInertia,whileNewtonextendedittoThreeBasicLawsofMechanics.TheclassicalworksofGalileo“ADialogueofTwoNewSciences(1683)”isamilestoneinthedevelopmentofmechanics.BesidethePrincipleofInertianowknownineveryhouse-hold,Galileoconductedalengthydiscussiononthedeformationandstrengthofsolidsinthatbook.Heinvestigatedthebreakingloadsofrodsundertensionandconcludedthattheloadwasindependentoflength(contrasttotheperceptionofdaVinciwhichwasbasedonthestatisticaldistributionofdefectsalongthewirelength)andproportionaltothecrosssectionarea.Itwasquiteunusualinanerawhenastronomydominatedthescience.Hetookonamaintargetofnowadaysstrengthofmaterials,thebendingofabeam.AhistoricaccountofGalileo’smethodologyisdescribedinthebook“HistoryofStrengthofMaterials”byTimoshenko.ThebasicschematicsareshowninFig.1.1.Abucketofwater(oranyformofweight)ishangedononeendofabeamoflengthLandarectangularcross-section.Theotherendofthebeamisclampedinawall.Galileoperformedthemechanicsanalysisforacantileverbeam.Thelatteristreated,thefirsttimeinthehistory,asadeformablebody.Theanalysisprovidedcorrectgeometricdependenceofthestrengthontheparameterssuchasthebeamlengthandthebendingresistanceofitscross-section.Unfortunately,thestressdistributionacrosstheheightofthebeamiswrong.ThelongitudinalstresswasassumedtobezerobyGalileoatthebottomofthebeam,ratherthanattheneutralplaneaswasfoundlater.Figure1.1Galileo’sperceptionofbeambendingTheconceptofanelasticrelationwaspioneeredbytheEnglishscientistRobertHooke.Thelawwasdiscoveredin1660,butpublishedonlyin1678.Inhispaperentitled“OfSpring”,theelasticrelation,initsmostprimitiveform,wasphrasedinananagramofLatin“ceiiiosssttuu”.Rearrangingtheletters,onefindstherealmeaningofso-calledHooke’sLaw“uttensiosicvis”,or“tensionisproportionaltothestretch”inEnglish.Hooke’slawestablishedthenotionof(linear)elasticitybutnotyetinawaythatwasexpressibleintermsofstressandstrain.StrokesoftheGenius(1700-1880)Earlydevelopmentsofelasticityrecordedmanyworksofscientificgiants.TheconceptsofstressandstrainwereintroducedbytheBernoullibrothers.ItwastheSwissmathematicianandmechanicianJakobBernoulliwhoobserved,inthefinalpaperofhislife,in1705,thattheproperwayofdescribingadeformationwastogiveforceperunitarea,orstress,asafunctionofelongationperunitlength,orstrain,ofamaterialfiberundertension.TheSwissmathematicianandmechanicianLeohardEuler,whowastaughtmathematicsbyJakob’sbrotherJohannBernoulli,proposedalinearrelationbetweenstressandstrain,in1727,oftheform.ThecoefficientEisnowgenerallycalledYoung’smodulusaftertheBritishnaturalistThomasYoung,whodevelopedarelatedideain1807.In1744,LeonardEuleranalyzedthebucklingofacompressedbar.Thedeflectionofthebarwasshowntoobeythefollowingequation: (1.1)whereisthestiffnessofaBernoullibeam,Pthecompressiveload,andxandydelineatetheprofileofthebar.Asaclassicalexampletoillustratethehistoricimportanceofelasticity,wementionthattwoimportantmathematicalconceptswerebornastheby-productsofthiselasticityanalysis.Thefirstoneisthe“VariationalCalculus”whichEulerusedtoderivetheequation.Thesecondistheconceptof“Bifurcation”thatinitiatesthewholethemeofnonlinearanalysis.Thesolutionof(1.1),knownasthe“elastica”intheliterature,wasfoundbyEuler.AsshowninFig.1.2,underdifferentstagesof“barcompression”,thebarwouldflipovertobecomeafoldedbarinstretching!SeveralpossiblefoldingpatternsshowninFig.1.2existfordifferentloadingparameters.Figure1.2Euler’selasticaShortlyafterthetimeofEuler,mostgiftedscientistsweregatheredinFrance.OneactiveresearchthrustintheAcademyofFranceisthepursuitofelasticity.Severalscientificgiantsgotinvolved.ThelistincludesNavier,Poisson,Columb,CauchyIn1821,Claude-Louis-Marie-HenriNavierpublishedanessayentitled“Equilibriumandmotionofelasticsolids”,inwhichthegoverningequationofelasticityisfirstformulatedas (1.2)whereisthedisplacementvector,Cameasureofelasticmodulusandthebodyforcevector.Thisequationiscalledsinceasthedisplacementequationofelasticity,orsimplythe“Navierequation”.Equation(1.2)isnotexactlyinthesameformasweareusingtoday,see(3.27).Itwasonlyvalidforaspecialmaterial,namelywhentwoLamèconstantsareequal.ItwasSimonDenisPoisson(1829)whobroughttheissueoflateralcontraction,andnamedafterhimisthePoisson’sratiothatrepresentsthenegativeratiobetweenextensionandtheinducedlateralcontraction.Initsoriginalform(1.2),theNavierequationisvalidonlyforaPoisson’sratioofonequarter.Poissonalsocontributedonfindingthelongitudinalandtransversewavesthatopenedthegatetoelastodynamics.ItwasthegreatFrenchmathematicianAugustin-LouisCauchy,originallyeducatedasanengineer,whoin1822formalizedtheconceptofstressinthecontextofageneralizedthree-dimensionaltheory,showeditspropertiesasconsistingofathreebythreesymmetricarrayofnumbersthattransformasatensor.CauchyisresponsibleforrelatingtractionvectorandstresstensorintheformofCauchy’sstressprinciple,theconceptsofprincipalstressesandprincipalstrains,thegeneralizedHooke’slaw,andtheequationsofmotionforacontinuumintermsofcomponentsofstresswiththeirboundaryconditions.Cauchyalsointroducedtheequationsthatexpressthesixcomponentsofstrain(threeextensionalandthreeshear)intermsofderivativesofdisplacementsforthecasewhereallthosederivativesaremuchsmallerthanunity;thoughsimilarexpressionshadbeengivenearlierbyEulerinexpressingratesofstrainingintermsofthederivativesofthevelocityfieldinafluid.Notonlyarigorousmathematician,Cauchyalsoexploredtheatomisticaspectofelasticityandderived,byusingthepairedinter-particlepotential,theso-calledCauchy’srelationoftheelasticitytensor.Thatrelationinferredacompletesymmetryoftheelasticitytensorwhoselimitationwillbediscussedinthenextchapter.ForthespecialcaseofisotropicsolidsexaminedindetailbyCauchy,thetheoryoflinearelasticresponseonlyrequirestheknowledgeofoneelasticconstant.ControversiesconcerningthemaximumpossiblenumberofindependentelasticmoduliinthemostgeneralanisotropicsolidweresettledbytheBritishmathematicianGeorgeGreenin1837.Greenpointedoutthattheexistenceofelasticstrainenergyrequiredthatofthe36elasticconstantsrelatingthe6symmetricstresscomponentsandthe6strains,atmost21couldbeindependent.TheScottishphysicistLordKelvinputthisconsiderationonsoundergroundin1855aspartofhisachievementofmacroscopicthermodynamics,showingthatastrainenergyfunctionmustexistforreversibleisothermaloradiabatic(isentropic)response.Themiddleandlate1800swereaperiodinwhichmanybasicelasticsolutionswerederivedandappliedtotechnologyandtotheexplanationofnaturalphenomena.AdhemerJeanClaudeBarredeSaint-Venant,astudentofNavier,contributedsignificantlytothisendeavor.Heinvented,amongotherthings,themethodofsemi-inversesolution(1853)andsolvedtheproblemsofbeambendingandtorsionofanon-circularprismaticrodinanaccuratemanner.WewilldevotethewholeChapter4onthissubject.HissolutionsevaluatedtheaccuracyofthebendingandtorsionsolutionsobtainedearlierfromasimplifiedmethodologyofStrengthofMaterials.Moreover,heproposedthefamousSaint-VenantPrinciple,whichgivesnumeroustasksforthemathematiciansandmechanicianstoengage.ThecontributionsfromtheGermanscientistsattheendofthe19thcentury,thenreplacedFranceastheintellectualcenteroftheworld,arealsoworthofmentioning.TheversatilePrussianphysicistGustovRobertKirchhoff,thefoundingmasterofelectro-magnetism,lefthismarksonelasticity.Inhisbook“Mechanik”publishedin1876,Kirchhoffextendedtheapplicationdomainofelasticitytoanewtypeofgeometry,plates.Kirchhoffappliedvirtualworkandvariationalcalculusprocedureintheframeworkofsimplifyingthekinematicalassumptionsthatfibersinitiallyperpendiculartotheplatemiddlesurfaceremainsoafterdeformationofthatsurface.Inonedimensionalversion,theKirchhoffplatetheoryassemblestheEuler-Bernoullibeamtheory.Itfindsimmenseapplicationsincivilandmechanicalengineeringasthestructuresintheformofplatesandshellsemerge.Anotherfoundingmasterofelectro-magnetismtheory,Helmholtz,alsocontributedtoelasticitybyincludingtheconceptofelasticfreeenergy,namedafterhimastheHelmholtzfreeenergy,andthesolutionforstresswavesintermsofHelmholtztransformation.FormingoftheMansion(1880-1950)Allpiecesofunderstandingsonelasticitywereassembledandsystemizedinthatperiodoftimetoformaformidablemansionofelasticityknowledge.BesidehisowncontributionsonthepointsourcetheoryandLovewave,Lovecompletedacomprehensivebook“ATreatiseontheMathematicalTheoryofElasticity(1892-1893)”.Thesymbolisclear;elasticitytookthecenter-stageamongallbranchesofmathematicalphysicsattheendthe19thcentury.TheintroductionofelasticitytovariousareasofengineeringwasgreatlybenefitedbytheenthusiasticeffortbyS.P.Timoshenko.TheformerlyRussiannobletyusedtoworkwithPrandtl,thefatherofaerodynamics.Timoshenkowasparticularlykeentotheengineeringaspectsofelasticity,andmadeenormouscontributionstotheengineeringelasticity,suchasbeamsonelasticfoundation,Timoshenkobeamtheory,mechanicsofplatesandshellsandelasticvibration.Timoshenkoisnotonlyascientistandanengineer,butalsoagreateducator.Hewrotemanybooksthatdominatedtheengineeringcollegeeducationfordecades.AlongwithVonKarman,TimoshenkowasresponsiblefortheprosperityofAppliedMechanicsintheUnitedStatesofAmerica.Twoadditionaldevelopmentsinthatperiodoftimeareworthmentioning.Thefirstisalongthelineofstructuresinlargedeflectionandbuckling,tackledbythegreatTheodereVonKarman,alongwithhisstudents,noticeablyH.S.TsienandW.Z.Chien.Oneofthefoundingmastersofquantummechanics,WernerHeisenberg,alsousedthesubjectofbucklingashisPh.D.thesis.ThesecondmajordevelopmentcamefromtheformerlySovietUnion,intheschoolrepresentedbyKolosovandMuskhelishivilli.Theydevelopedthecomplexpotentialmethodofelasticity.ThatsubjectwasbrilliantlysummarizedintwomonographsofMuskhelishivilli,namely“SomeBasicProblemsinMathematicalTheoryofElasticity”and“SingularIntegralEquations”.Themethodsofanalyticalfunction,Cauchyintegral,singularintegralequation,conformalmapping,Riemann-Hilbertlinearrelationshipproblemwereconciselyputtogethertogetarationalefortheplaneandanti-planeproblemsoflinearelasticity.Thecomplexpotentialmethodwasextendedlateronfromtheisotropicelasticitytoanisotropicelasticity.ExpandingtheHorizonofElasticity(Since1950)Variousbranchesofelasticitywereprosperedinthepasthalfcentury.ThefieldofelasticstabilitywasadvancedbytheDutchappliedmechanicianandengineerK.T.Koiter(1950),theconceptsofstatic,kinematicalanddynamicstabilitiesareproposed.Theissueofdefectsensitivityisextensivelyexplored.ThefieldoffracturemechanicsispioneeredbytheBritishaeronauticalengineerA.A.Griffith(1921).Griffithmadehisfamouspropositionthataspontaneouscrackgrowthwouldoccurwhentheenergyreleasedfromtheelasticfieldjustbalancedtheworkrequiredtoseparatesurfacesinthesolid.Thefieldbecamethecenter-stageinsolidmechanicssincethemid-20thcentury,largelyduetothere-evaluationforthenavallossinWorldWarIIandtheenthusiasticeffortbyGeorgeR.Irwin,anAmericanengineerandphysicist.Irwin(1957)proposedanalternativemeasureofthestressintensityfactorfortheseveritynearacracktip.LargelyundertheimpetusofIrwin,amajorbodyofworkonthemechanicsofcrackgrowthandfracture,includingfracturebyfatigueandstresscorrosioncracking,startedinthelate1940sandiscontinuingintothe21stcentury.ThefoundationofnonlinearfracturemechanicswaslaiddownlargelyduetotheworksofAmericanmechanicianandgeologistJ.R.Rice(1968).Thecriticalparametersinfracturemechanics,suchastheenergyreleaserateG,thestressintensityfactorK,andtheJ-integralJarenamedafterGriffith,IrwinandRice,respectively.AnotherimportantdevelopmentwhichnowformsthebasicsolutionstrategyinengineeringistheinventionoftheFiniteElementMethod(FEM).ThismethodwasoutlinedbythemathematicianRichardCourant(1943)andwasdevelopedindependently,andputtopracticaluseoncomputers,from50sto60s,bytheaeronauticalengineersM.J.Taylor,RayW.CloughandothersinUnitedStates,thecivilengineersJ.H.ArgyrisandO.C.ZienkiewiczinBritain,andthemathematicianFENGKanginChina.Themethodoriginatesinsolvingelasticityproblems,andexpandsbeyondimaginationtoformthebasicbuildingblocksofcomputationalmechanics.ThenewestapplicationsofFEMincludematerialsmicrostructures,biologicalstructuresandmedicalprocedures.Thetheoreticalaspectofelasticityhasalsobeenenrichedintherecentyears.Theclassicaldevelopmentofelasticityneverfullyconfrontedtheproblemoffiniteelasticstraining,inwhichmaterialfiberschangetheirlengthsbyotherthanverysmallamount.Thewidespreaduseofnaturalpolymericmaterials,suchasnaturalrubbersputtheanalysisoffinitedeformationelasticityinlargedemand.TheworksofBritish-bornengineerandappliedmathematicianRonaldS.Rivlin(1960)forfinitedeformationelasticityprovidedsolutionsfortension,torsion,bendingandinflectionatextremelylargedeformation.Healsoparticipatedinintroducingthetensorrepresentationtheorem(Rivlin-Ericksentheorem)forisotropicelasticity.Theso-calledtheMooney-Rivlintheorygivesafairdescriptionforthesubjectofrubberelasticity.Anotherimportantarenaforthedevelopmentofelasticityistargetedforanisotropicmaterials.Inthisarea,theworksofJ.D.Eshelby,S.G.LehnitskiiandA.N.Stroh(1959-1962)madearevolutionarychangeofthefield.ThetragiclifeofStrohandhisbrilliantcontributioninashortprofessionalperiodoftenyearswasprescribedintheeulogyinthecomprehensivebookofT.C.T.Ting(1996).Thescopeofthislecturenoteisunfortunatelynotabletocoverthissubject,andthereadersmayconsultthebookbyTingasareference.1.2ApplicationsofElasticityConstructionElasticityfindsapplicationseverywhere.Itsapplicationsforbasicinfrastructurearethefirstonthelist.Thestudentsmayreadaninterestingbook“MechanicsandEngineering”(2000)editedbyWuYoushengtoexplorethewondersofelasticity.TheexamplesincludetheintegrityforThreeGorgesDam,criticalrotatingspeedforanelectricpowergenerator,andthedesigntosuppressthewind-inducedwrigglingoftheTVantennapole,knownasthe“EastPearl”,inShanghai.OfparticularinterestaretheelasticityproblemsinthefourbasicconstructionprojectsforChinatoexploitherwest.Thefirstprojectconcernsthegas-lineconstructionfromthewesttotheeast.Thecreepofthesanddomesmayinduceunpredictablehighstressonthegas-linepipes,causingtheirdynamicrupture.Anotherissueconcernswiththebuildingofsuper-sizegastanksthatimposeseverestructurereliabilityproblem.ThesecondprojectconcernstherailwayfromQinghaiProvincetoTibet,agoodportionofitwillpassthroughthehighlandwithaltitudehigherthan5000mabovesealevel.Thedifficultylargelyliesonthemechanicsofsoilunderextremelylowtemperature.Theelasticityoftheproblemisintertwinedwiththecapillaryfluidasoneconsidersthemazeofwater-icemixture.Thethirdprojectconcernsthepowertransmissionfromthewesttotheeast,involvingelasticityproblemssuchasthewrigglingofhighvoltageelectriccablesandthecriticalrpmoftheelectricgenerators.Thefourthprojectconcernshighwaysconstruction,wheretheelasticityoftheroadlayer,incombiningwitharelEarthquakeThecivilengineerscanquantifytheeventofearthquakes,aswellastheireffectonstructuresviaelasticity.Anearthquakemanifestsitselfasstresswavesofdilatationalandshearfeatures.Elasticitycanpredictthesourceandtheamplitudeofthequake,aswellasitspowerofdestruction.Investigationonfaultingdynamics(anexcellentreviewwasgivenbyJ.R.RiceastheOpeningLectureofICTAM2000,withaChinesetranslationbyGaofengGuoinAdvancesinMechanics,2001.8.25).Mostearthquakesaresubsonic.The1999earthquakeinTurkey,however,isintersonic.Thestudyforsuchproblempromotestherecentresearchesofintersonicfracturemechanics.Thepredictionofearthquakesreliesonthedetectablesignalsbytheprecursoroftheearthquakes.Doestheprecursorexistanddetectable,ornotdetectableinprinciple?Thisisthecurrentresearchsubjectinelasticity.Thephenomenonoffailurewaveswasjustdiscoveredseveralyearsago.Thedispersionforthepropagationofthefailurewavewillshedlightstothepredictabilityofanearthquake.Anotherissueinwhichelasticitywillprovidesahelpinghandistosuppressthevibrationinducedbyearthquakes.AgoodexampleforsuppressedvibrationunderearthquakeinancientJapancanbefoundinthe33Palace,Kyoto,wherelayeredfoundationwasutilizedtoabsorbanddiffusetheshakenofearthquakesoverhundredsofyears.Themodernexampleconcernswiththeapproachofactivecontrol.Acloselyloopedsystemcouldfirstsensetheamplitudeandfrequencyofthevibration,thencounter-balanceitbyout-of-phasemotionoftheactuators.Largelyattributedtothistechnique,theskyscraperscannowbebuiltinJapan.AstronauticEngineeringThesametechniqueofvibrationsuppressionisinampledemandinaeronauticandastronauticengineering.Thevibrationofarocketanditspayloads(suchassatellites)duringlaunchingisacriticalissue.Theprooftestsonarealsizevibrationtableusuallyconsumealargeamountoftheexpensesofsatellitemakingandoccupyasubstantialdurationinitsproductionperiod.Uponair,theflutteringofair-frameisacriticalissuewhichendorsedtheestablishmentofareoelasticity.Furtherupinthespace,thegravityforcediminishes,leavingonlytheelasticityeffectforspace-platforms.Thevibrationforthesolar-energycellpaneldictatesthesuccessofaspacemission.Thefunctionalityofamissilealertsatellitedependsontheaccuracytotonedownitsframevibrationwhenagiganticradarantennarotatestoscanthesky.Forthescientificexplorationinthespace,theFASTprojectutilizestheuniquegeologicalformationinChina.Adownscaled(oneto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年剪切機(jī)床項(xiàng)目提案報(bào)告
- 神奇的太空之旅想象文4篇
- 2025廣西百色干部學(xué)院招聘教研人員3人考前自測高頻考點(diǎn)模擬試題(含答案詳解)
- 2025河南新鄉(xiāng)某國有企業(yè)招聘人力資源部經(jīng)理1名考前自測高頻考點(diǎn)模擬試題附答案詳解
- 2025年蚌埠五河縣鄉(xiāng)村醫(yī)生“鄉(xiāng)聘村用”招聘30人模擬試卷及答案詳解一套
- 2025年春季北燃實(shí)業(yè)集團(tuán)校園招聘模擬試卷附答案詳解(典型題)
- 企業(yè)資質(zhì)提升承諾函(7篇)
- 2025江西撫州市婦幼保健院編制外臨床醫(yī)師招聘7人考前自測高頻考點(diǎn)模擬試題及答案詳解1套
- 2025廣東汕頭市潮陽區(qū)教育局屬下學(xué)校外出招聘碩士研究生18人(編制)考前自測高頻考點(diǎn)模擬試題及一套參考答案詳解
- 2025包頭白云鄂博礦區(qū)就業(yè)困難人員公益性崗位招聘考前自測高頻考點(diǎn)模擬試題有答案詳解
- 保險(xiǎn)基礎(chǔ)知識培訓(xùn)
- 口腔藥品急救知識培訓(xùn)課件
- 2025年教育系統(tǒng)學(xué)校中層后備干部選拔考試題(含答案)
- 養(yǎng)老院安全培訓(xùn)考試題及答案解析
- DB32-T 5192-2025 工業(yè)園區(qū)碳排放核算指南
- 湖南省九校聯(lián)盟2026屆高三上學(xué)期9月第一次聯(lián)考日語試題(含答案)
- 時(shí)事政治講座課件
- 四次侵華戰(zhàn)爭課件
- 2025年成人高考試題及答案
- 2025年上海市公安輔警、法檢系統(tǒng)輔助文員招聘考試(職業(yè)能力傾向測驗(yàn))歷年參考題庫含答案詳解
- 2025年上海市大數(shù)據(jù)中心工作人員公開招聘考試參考題庫及答案解析
評論
0/150
提交評論