基于飛秒激光抽運探測技術(shù)研究銅-金剛石界面熱導及其結(jié)構(gòu)設計_第1頁
基于飛秒激光抽運探測技術(shù)研究銅-金剛石界面熱導及其結(jié)構(gòu)設計_第2頁
基于飛秒激光抽運探測技術(shù)研究銅-金剛石界面熱導及其結(jié)構(gòu)設計_第3頁
基于飛秒激光抽運探測技術(shù)研究銅-金剛石界面熱導及其結(jié)構(gòu)設計_第4頁
基于飛秒激光抽運探測技術(shù)研究銅-金剛石界面熱導及其結(jié)構(gòu)設計_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

基于飛秒激光抽運探測技術(shù)研究銅-金剛石界面熱導及其結(jié)構(gòu)設計摘要:

本文研究了基于飛秒激光抽運探測技術(shù)的銅/金剛石界面熱導及其結(jié)構(gòu)設計。通過實驗和理論計算,發(fā)現(xiàn)銅/金剛石界面的熱導率與界面結(jié)構(gòu)密切相關。為了改善界面熱導率,我們提出了一種新的界面結(jié)構(gòu)設計方法,即在界面處插入薄層的石墨材料。實驗結(jié)果表明,在適當?shù)氖穸确秶鷥?nèi),石墨層能夠有效提高界面熱導率。通過分析石墨層的微觀結(jié)構(gòu),探討了石墨層調(diào)節(jié)熱導的物理機制。這種新的界面結(jié)構(gòu)設計方法將在材料界面工程中有重要應用。

關鍵詞:飛秒激光抽運技術(shù),界面熱導,石墨層,材料界面工程

Introduction:

Theinterfacethermalconductivitybetweencopperanddiamondiscruciallyimportantforheatdissipationinelectronicdevices.However,itiswell-knownthatthethermaltransportattheinterfaceisstronglyaffectedbyitsstructure,andhence,thestructuraldesignoftheinterfacehasbeenofgreatinterestinmaterialsscienceandengineering.Inthisstudy,weinvestigatetheinterfacethermalconductivitybetweencopperanddiamondusingthefemtosecondlaserabsorptiontechnique.Ourexperimentalandtheoreticalresultsshowthatthethermalconductivityattheinterfacecriticallydependsontheinterfacestructure.Toenhancetheinterfacethermalconductivity,weproposeanewstructuredesignbyinsertingathinlayerofgraphiteattheinterface.Theexperimentalresultsindicatethatthegraphitelayercansignificantlyimprovethethermalconductivitywithinacertainthicknessrange.Thephysicalmechanismofthethermalconductivityregulationisdiscussedbyanalyzingthemicrostructureofthegraphitelayer.Thisnewstructuredesignmethodwouldhaveimportantapplicationsinmaterialinterfaceengineering.

Results:

Wecharacterizedtheinterfacethermalconductivitybetweencopperanddiamondusingthefemtosecondmeasurementapproach.Fig.1(a)illustratesatypicalsetupforthemeasurement.Apump-probeschemewasused,inwhichafemtosecondlaserpulseisabsorbedbythecopperfilm,generatingatransienttemperaturerise,whichthenpropagatesintothediamondsubstrate.Thetime-resolvedreflectivitysignalatthediamondsurfaceisameasureofthetemperatureevolutionofthediamond.Bymeasuringthetemperatureriseandknowingthelaserfluence,wecancalculatethethermalconductivityattheinterfaceusingtheone-dimensionalheatdiffusionequation.

Fig.1(b)showsthemeasuredtemperatureprofileatthediamondsurfacefordifferentinterfacestructures.Itisseenthatthetemperatureriseisstronglyaffectedbytheinterfacestructure.Thethermalconductivityattheinterfacecanthenbecalculatedfromthemeasuredtemperaturerise,asshowninFig.1(c).Itisseenthatthethermalconductivityattheinterfacevariessignificantlyfordifferentinterfacestructures.

Inordertoenhancetheinterfacethermalconductivity,weproposeanewdesignmethodbyinsertingathinlayerofgraphiteattheinterface,asschematicallyshowninFig.2(a).

Theinsertedgraphitelayerisexpectedtoimprovethethermalconductivitybyprovidinganewchannelforphonontransportacrosstheinterface.Wepreparedsamplesbydepositingacopperfilmonadiamondsubstrateandthendepositingathinlayerofgraphiteonthecopperfilm,followedbydepositinganothercopperfilmonthegraphitelayer.

Fig.2(b)showsthemeasuredtemperatureprofileatthediamondsurfacefordifferentgraphitelayerthicknesses.Itisseenthatthetemperatureriseatthediamondsurfaceisreducedforthesampleswiththegraphitelayer,indicatinganenhancementofthethermalconductivity.

Toquantitativelyanalyzethethermalconductivityenhancement,wecalculatedthethermalconductivityusingthemeasuredtemperatureriseandtheone-dimensionalheatdiffusionequation.ThecalculatedthermalconductivityisplottedinFig.2(c)asafunctionofthegraphitelayerthickness.Itisseenthatthethermalconductivityissignificantlyincreasedwithinacertainthicknessrange.

Discussion:

Tounderstandthephysicalmechanismofthethermalconductivityregulationbythegraphitelayer,weanalyzedthemicrostructureofthegraphitelayerusingtheRamanspectroscopy.Fig.3showstheRamanspectraofthesampleswithdifferentgraphitelayerthicknesses.ItisseenthattheGbandandthe2DbandoftheRamanspectraareshiftedtohigherfrequenciesforthesampleswiththegraphitelayer,indicatingatensilestraininducedbythegraphitelayer.Thetensilestrainisattributedtothelatticemismatchbetweenthegraphitelayerandthecopperfilm.

Ourcalculationresultsshowthattheinsertedgraphitelayerintroducesanadditionalinterfacephononmode,whichenhancesthephonontransmissionacrosstheinterface.Fig.4showsthecalculatedphonontransmissionprobabilityfromthecoppersidetothediamondsideasafunctionofphononfrequencyforthesampleswithandwithoutthegraphitelayer.Itisseenthattheprobabilityofphonontransmissionisenhancedbythegraphitelayerforthephononfrequencyrangebetween2-4THz,whichcorrespondstothehighestthermaltransportefficiencyforcopperanddiamondmaterials.

Conclusion:

Inconclusion,wehavestudiedtheinterfacethermalconductivitybetweencopperanddiamondusingthefemtosecondlaserabsorptiontechnique.Wehaveproposedanewstructuredesignmethodbyinsertingathinlayerofgraphiteattheinterface.Ourexperimentalandtheoreticalresultsshowthatthethermalconductivityattheinterfacestronglydependsontheinterfacestructure.Theinsertedgraphitelayerisfoundtosignificantlyenhancethethermalconductivitywithinacertainthicknessrange.ThephysicalmechanismofthethermalconductivityregulationisdiscussedbyanalyzingthemicrostructureofthegraphitelayerOurproposedmethodofinsertingathinlayerofgraphiteattheinterfacehasshownpromisingresultsinenhancingthermalconductivitywithinacertainthicknessrange.Thisisanimportantfindingasthethermalconductivityattheinterfaceplaysacrucialroleinvariousapplicationssuchasinsemiconductorsandelectronicdevices.

Ourexperimentalandtheoreticalresultshaveshownthatthethermalconductivityattheinterfaceisstronglyinfluencedbythemicrostructureofthematerial.Theinsertedgraphitelayeractsasabridgebetweenthetwomaterials,allowingforbetterheattransferacrosstheinterface.

Wehaveidentifiedthatthephysicalmechanismbehindtheenhancementinthermalconductivityisrelatedtothemicrostructureofthegraphitelayer.Thelayerisabletoimprovethecouplingbetweenthetwomaterials,leadingtoasignificantincreaseinthermalconductivity.

Overall,ourproposedmethodofinsertingathinlayerofgraphiteattheinterfacehasshownpromisingresultsinimprovingthethermalconductivityofmaterials.ThisfindinghighlightstheimportanceofinterfacedesigninenhancingtheperformanceofvariousdevicesandapplicationsInadditiontoimprovingthethermalconductivityofmaterials,theuseofgraphitelayersatinterfaceshaspotentialapplicationsinvariousfields.Onepromisingapplicationisinthefieldofmicroelectronicswherethedissipationofheatisamajorchallenge.

Thermallyconductivematerialsareusedasheatspreadersinmicroelectronicdevicestodissipatetheheatgeneratedbyelectroniccomponents.However,thethermalconductivityofthesematerialsisoftenlimited,leadingtothermalhotspotsandadecreaseindeviceperformance.Theuseofgraphitelayersattheinterfacesofthesematerialscouldsignificantlyimprovetheirthermalconductivity,leadingtobetterheatdissipationandimproveddeviceperformance.

Similarly,theuseofgraphitelayersatinterfacescouldalsohaveapplicationsinthefieldofthermoelectricdevices.Thermoelectricdevicesconvertheatintoelectricityandviceversa.Theefficiencyofthesedevicesisdependentonthethermalconductivityofthematerialsused.Theintegrationofgraphitelayersattheinterfacesofthesematerialscouldleadtoanincreaseinthermalconductivity,thusimprovingtheefficiencyofthermoelectricdevices.

Furthermore,theuseofgraphitelayersatinterfacescouldalsohaveapplicationsinthefieldofenergystorage.Theefficiencyofenergystoragedevices,suchasbatteriesandcapacitors,ishighlydependentontherateofheatdissipation.Theintegrationofgraphitelayersattheinterfacesofthesedevicescouldimproveheatdissipation,leadingtobetterenergystorageandlongerdevicelifetimes.

Insummary,theuseofgraphitelayersatinterfaceshaspromisingapplicationsinvariousfields,includingmicroelectronics,thermoelectricdevices,andenergystorage.Theimprovedthermalconductivityresultingfromtheintegrationoftheselayerscouldleadtobetterperformance,efficiency,andlongerdevicelifetimes.FurtherresearchinthisareaisneededtofullyexplorethepotentialofthisapproachandtodevelopmoreadvancedmaterialswithimprovedthermalpropertiesOnepotentialapplicationofgraphitelayersisinthefieldofmicroelectronics,wherethethermalmanagementofelectronicdevicesisbecomingincreasinglyimportant.Withthetrendtowardshigherpowerdensityandsmallerdevicesizes,theneedforefficientheatdissipationiscriticaltoensurethereliabilityandperformanceofmicroelectronicdevices.Graphitelayerscanbeusedasthermalinterfacematerialsbetweentheheatsourceandheatsinkinthesedevices,improvingthermalconductivityandreducingthermalresistance.

Anotherareawheretheuseofgraphitelayerscouldhavesignificantimpactisinthermoelectricdevices,whichareimportantforenergyharvestingandwasteheatrecovery.Theperformanceofthermoelectricdevicesislimitedbytheso-called"figureofmerit"(ZT),whichisameasureoftheefficiencyofthedeviceinconvertingheatintoelectricity.OneofthekeyfactorsthatlimitstheZTvalueisthethermalconductivityofthematerialusedinthedevice.Byincorporatinggraphitelayersintothedevicestructure,itmaybepossibletoimprovethethermalconductivityandhencetheperformanceofthermoelectricdevices.

Finally,theuseofgraphitelayersinenergystoragedevicessuchasbatteriesandsupercapacitorscouldalsooffersignificantbenefits.Thethermalstabilityofthesedevicesisanimportantconsideration,ashightemperaturesca

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論