




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
NetworkingandInternetworking3.1Introduction3.2Typesofnetwork3.3Networkprinciples3.4Internetprotocols3.5SummaryDistributedsystemsuselocalareanetworks,wideareanetworksandinternetworksforcommunication.Theperformance,reliability,scalability,mobilityandqualityofservicecharacteristicsoftheunderlyingnetworksimpactthebehaviourofdistributedsystemsandhenceaffecttheirdesign.Changesinuserrequirementshaveresultedintheemergenceofwirelessnetworksandofhigh-performancenetworkswithqualityofserviceguarantees.2Theprinciplesonwhichcomputernetworksarebasedincludeprotocollayering,packetswitching,routinganddatastreaming.Internetworkingtechniquesenableheterogeneousnetworkstobeintegrated.TheInternetisthemajorexample;itsprotocolsarealmostuniversallyusedindistributedsystems.33.1IntroductionThenetworksusedindistributedsystemsarebuiltfromavarietyoftransmissionmedia,includingwire,cable,fibreandwirelesschannels;hardwaredevices,includingrouters,switches,bridges,hubs,repeatersandnetworkinterfaces;andsoftwarecomponents,includingprotocolstacks,communicationhandlersanddrivers.Theresultingfunctionalityandperformanceavailabletodistributedsystemandapplicationprogramsisaffectedbyallofthese.3.1IntroductionWeshallrefertothecollectionofhardwareandsoftwarecomponentsthatprovidethecommunicationfacilitiesforadistributedsystemasacommunicationsubsystem.Thecomputersandotherdevicesthatusethenetworkforcommunicationpurposesarereferredtoashosts.Thetermnodeisusedtorefertoanycomputerorswitchingdeviceattachedtoanetwork.3.1IntroductionTheInternetisasinglecommunicationsubsystemprovidingcommunicationbetweenallofthehoststhatareconnectedtoit.TheInternetisconstructedfrommanysubnets.Asubnetisaunitofrouting(deliveringdatafromonepartoftheInternettoanother);itisacollectionofnodesthatcanallbereachedonthesamephysicalnetwork.TheInternet’sinfrastructureincludesanarchitectureandhardwareandsoftwarecomponentsthateffectivelyintegratediversesubnetsintoasingledatacommunicationservice.3.1IntroductionThischapterisintendedtoprovideanintroductoryoverviewofcomputernetworkingwithreferencetothecommunicationrequirementsofdistributedsystems.Intheremainderofthissectionwediscussthecommunicationrequirementsofdistributedsystems.WegiveanoverviewofnetworktypesinSection3.2andanintroductiontonetworkingprinciplesinSection3.3.Section3.4dealsspecificallywiththeInternet.ThechapterconcludeswithdetailedcasestudiesontheEthernet,IEEE802.11(WiFi)andBluetoothnetworkingtechnologiesinSection.1NetworkingissuesfordistributedsystemsEarlycomputernetworksweredesignedtomeetafew,relativelysimpleapplicationrequirements.Networkapplicationssuchasfiletransfer,remotelogin,electronicmailandnewsgroupsweresupported.Thesubsequentdevelopmentofdistributedsystemswithsupportfordistributedapplicationprogramsaccessingsharedfilesandotherresourcessetahigherstandardofperformancetomeettheneedsofinteractiveapplications.3.1.1NetworkingissuesfordistributedsystemsMorerecently,followingthegrowthandcommercializationoftheInternetandtheemergenceofmanynewmodesofuse,morestringentrequirementsforreliability,scalability,mobility,securityandqualityofservicehaveemerged.Inthissection,wedefineanddescribethenatureofeachoftheserequirements.PerformanceThenetworkperformanceparametersthatareofprimaryinterestforourpurposesarethoseaffectingthespeedwithwhichindividualmessagescanbetransferredbetweentwointerconnectedcomputers.Thesearethelatencyandthepointto-pointdatatransferrate:LatencyDatatransferrateFollowingfromthesedefinitions,thetimerequiredforanetworktotransferamessagecontaininglengthbitsbetweentwocomputersis:Messagetransmissiontime=latency+length?datatransferrateTheaboveequationisvalidformessageswhoselengthdoesnotexceedamaximumthatisdeterminedbytheunderlyingnetworktechnology.Longermessageshavetobesegmentedandthetransmissiontimeisthesumofthetimesforthesegments.Thetotalsystembandwidthofanetworkisameasureofthroughput–thetotalvolumeoftrafficthatcanbetransferredacrossthenetworkinagiventime.Inmanylocalareanetworktechnologies,suchasEthernet,thefulltransmissioncapacityofthenetworkisusedforeverytransmissionandthesystembandwidthisthesameasthedatatransferrate.ScalabilityComputernetworksareanindispensablepartoftheinfrastructureofmodernsocieties.InFigure1.6weshowedthegrowthinthenumberofhostcomputersandwebserversconnectedtotheInternetovera12-yearperiodendingin2005.Thegrowthsincethenhasbeensorapidanddiversethatitisdifficulttofindrecentreliablestatistics.ThepotentialfuturesizeoftheInternetiscommensuratewiththepopulationoftheplanet.Itisrealistictoexpectittoincludeseveralbillionnodesandhundredsofmillionsofactivehosts.SecurityChapter11setsouttherequirementsandtechniquesforachievingsecurityindistributedsystems.Thefirstlevelofdefenceadoptedbymostorganizationsistoprotectitsnetworksandthecomputersattachedtothemwithafirewall.Afirewallcreatesaprotectionboundarybetweentheorganization’sintranetandtherestoftheInternet.Thepurposeofthefirewallistoprotecttheresourcesinallofthecomputersinsidetheorganizationfromaccessbyexternalusersorprocessesandtocontroltheuseofresourcesoutsidethefirewallbyusersinsidetheorganization.MobilityMobiledevicessuchaslaptopcomputersandInternet-capablemobilephonesaremovedfrequentlybetweenlocationsandreconnectedatconvenientnetworkconnectionpointsorevenusedwhileonthemove.Wirelessnetworksprovideconnectivitytosuchdevices,buttheaddressingandroutingschemesoftheInternetweredevelopedbeforetheadventofthesemobiledevicesandarenotwelladaptedtotheirneedforintermittentconnectiontomanydifferentsubnets.TheInternet’smechanismshavebeenadaptedandextendedtosupportmobility,buttheexpectedfuturegrowthintheuseofmobiledeviceswilldemandfurtherdevelopment.3.2TypesofnetworkHereweintroducethemaintypesofnetworkthatareusedtosupportdistributedsystems:personalareanetworks,localareanetworks,wideareanetworks,metropolitanareanetworksandthewirelessvariantsofthem.InternetworkssuchastheInternetareconstructedfromnetworksofallthesetypes.Figure3.1showstheperformancecharacteristicsofthevarioustypesofnetworkdiscussedbelow.Personalareanetworks(PANs)Localareanetworks(LANs)Wideareanetworks(WANs)Metropolitanareanetworks(MANs)Wirelesslocalareanetworks(WLANs)Wirelessmetropolitanareanetworks(WMANs)Wirelesswideareanetworks(WWANs)InternetworksNetworkerrors3.3Networkprinciples3.3.1Packettransmission3.3.2Datastreaming3.3.3Switchingschemes3.3.4Protocols3.3.5Routing3.3.6Congestioncontrol3.3.7Internetworking3.3.3SwitchingschemesBroadcastCircuitswitchingPacketswitchingFramerelay3.3.4ProtocolsThetermprotocolisusedtorefertoawell-knownsetofrulesandformatstobeusedforcommunicationbetweenprocessesinordertoperformagiventask.Thedefinitionofaprotocolhastwoimportantpartstoit:?aspecificationofthesequenceofmessagesthatmustbeexchanged;?aspecificationoftheformatofthedatainthemessages.3.3.5RoutingThedeliveryofpacketstotheirdestinationsinanetworksuchastheoneshowninFigure3.7isthecollectiveresponsibilityoftherouterslocatedatconnectionpoints.UnlessthesourceanddestinationhostsareonthesameLAN,thepackethastobetransmittedinaseriesofhops,passingthroughrouternodes.Thedeterminationofroutesforthetransmissionofpacketstotheirdestinationsistheresponsibilityofaroutingalgorithmimplementedbyaprograminthenetworklayerateachnode.
Arouterexchangesinformationaboutthenetworkwithitsneighbouringnodesbysendingasummaryofitsroutingtableusingarouterinformationprotocol(RIP).TheRIPactionsperformedatarouteraredescribedinformallyasfollows:1.Periodically,andwheneverthelocalroutingtablechanges,sendthetable(inasummaryform)toallaccessibleneighbours.Thatis,sendanRIPpacketcontainingacopyofthetableoneachnon-faultyoutgoinglink.2.Whenatableisreceivedfromaneighbouringrouter,ifthereceivedtableshowsaroutetoanewdestination,orabetter(lower-cost)routetoanexistingdestination,updatethelocaltablewiththenewroute.Ifthetablewasreceivedonlinknanditgivesadifferentcostthanthelocaltableforaroutethatbeginswithlinkn,replacethecostinthelocaltablewiththenewcost.Thisisdonebecausethenewtablewasreceivedfromarouterthatisclosertotherelevantdestinationandisthereforealwaysmoreauthoritativeforroutesthatpassthroughit.3.3.6CongestioncontrolThecapacityofanetworkislimitedbytheperformanceofitscommunicationlinksandswitchingnodes.Whentheloadatanyparticularlinkornodeapproachesitscapacity,queueswillbuildupathoststryingtosendpacketsandatintermediatenodesholdingpacketswhoseonwardtransmissionisblockedbyothertraffic.Iftheloadcontinuesatthesamehighlevel,thequeueswillcontinuetogrowuntiltheyreachthelimitofavailablebufferspace.Oncethisstateisreachedatanode,thenodehasnooptionbuttodropfurtherincomingpackets.Aswehavealreadynoted,theoccasionallossofpacketsatthenetworklevelisacceptableandcanberemediedbyretransmissioninitiatedathigherlevels.Butiftherateofpacketlossandretransmissionreachesasubstantiallevel,theeffectonthethroughputofthenetworkcanbedevastating.Insteadofallowingpacketstotravelthroughthenetworkuntiltheyreachovercongestednodes,wheretheywillhavetobedropped,itwouldbebettertoholdthematearliernodesuntilthecongestionisreduced.Thiswillresultinincreaseddelaysforpacketsbutwillnotsignificantlydegradethetotalthroughputofthenetwork.Congestioncontrolisthenamegiventotechniquesthataredesignedtoachievethis.3.3.7InternetworkingTherearemanynetworktechnologieswithdifferentnetwork-,link-andphysical-layerprotocols.Tobuildanintegratednetwork(aninternetwork)wemustintegratemanysubnets,eachofwhichisbasedononeofthesenetworktechnologies.Tomakethispossible,thefollowingareneeded:1.aunifiedinternetworkaddressingschemethatenablespacketstobeaddressedtoanyhostconnectedtoanysubnet;2.aprotocoldefiningtheformatofinternetworkpacketsandgivingrulesaccordingtowhichtheyarehandled;3.interconnectingcomponentsthatroutepacketstotheirdestinationsintermsofinternetworkaddresses,transmittingthepacketsusingsubnetswithavarietyofnetworktechnologies.3.4Internetprotocols3.4.1IPaddressing3.4.2TheIPprotocol3.4.3IProuting3.4.4IPversion63.4.5MobileIP3.4.6TCPandUDP3.4.7Domainnames3.4.8Firewalls3.4.1IPaddressingPerhapsthemostchallengingaspectofthedesignoftheInternetprotocolswastheconstructionofschemesfornamingandaddressinghostsandforroutingIPpacketstotheirdestinations.Theschemeusedforassigninghostaddressestonetworksandthecomputersconnectedtothemhadtosatisfythefollowingrequirements:?Itmustbeuniversal–anyhostmustbeabletosendpacketstoanyotherhostintheInternet.?Itmustbeefficientinitsuseoftheaddressspace–itisimpossibletopredicttheultimatesizeoftheInternetandthenumberofnetworkandhostaddresseslikelytoberequired.Theaddressspacemustbecarefullypartitionedtoensurethataddresseswillnotrunout.In1978–82,whenthespecificationsfortheTCP/IPprotocolswerebeingdeveloped,provisionfor232orapproximately4billionaddressablehosts(aboutthesameasthepopulationoftheworldatthattime)wasconsideredadequate.Thisjudgementhasprovedtobeshort-sighted,fortworeasons:–TherateofgrowthoftheInternethasfaroutstrippedallpredictions.–Theaddressspacehasbeenallocatedandusedmuchlessefficientlythanexpected.?Theaddressingschememustlenditselftothedevelopmentofaflexibleandefficientroutingscheme,buttheaddressesthemselvescannotcontainverymuchoftheinformationneededtorouteapackettoitsdestination.TodaytheoverwhelmingmajorityofInternettrafficcontinuestousetheIPversion4addressandpacketformatdefinedthreedecadesago.TheschemeassignsanIPaddresstoeachhostintheInternet–a32-bitnumericidentifiercontaininganetworkidentifier,whichuniquelyidentifiesoneofthesubnetworksintheInternet,andahostidentifier,whichuniquelyidentifiesthehost’sconnectiontothatnetwork.ItistheseaddressesthatareplacedinIPpacketsandusedtoroutethemtotheirdestinations.ThedesignadoptedfortheInternetaddressspaceisshowninFigure3.15.These32-bitInternetaddresses,containinganetworkidentifierandhostidentifier,areusuallywrittenasasequenceoffourdecimalnumbersseparatedbydots.Eachdecimalnumberrepresentsoneofthefourbytes,oroctets,oftheIPaddress.ThepermissiblevaluesforeachclassofnetworkaddressareshowninFigure.2TheIPprotocolTheIPprotocoltransmitsdatagramsfromonehosttoanother,ifnecessaryviaintermediaterouters.ThefullIPpacketformatisrathercomplex,butFigure3.17Figure3.17IPpacketlayoutIPaddressofsourceIPaddressofdestinationdataheaderupto64kilobytesshowsthemaincomponents.Thereareseveralheaderfields,notshowninthediagram,thatareusedbythetransmissionandroutingalgorithms.TheIPlayerputsIPdatagramsintonetworkpacketssuitablefortransmissionintheunderlyingnetwork(whichmight,forexample,beanEthernet).WhenanIPdatagramislongerthantheMTUoftheunderlyingnetwork,itisbrokenintosmallerpacketsatthesourceandreassembledatitsfinaldestination.Packetscanbefurtherbrokenuptosuittheunderlyingnetworksencounteredduringthejourneyfromsourcetodestination.(Eachpackethasafragmentidentifiertoenableout-of-orderfragmentstobecollected.)3.4.3IProutingTheIPlayerroutespacketsfromtheirsourcetotheirdestination.EachrouterintheInternetimplementsIP-layersoftwaretoprovidearoutingalgorithm.RIP-1,thefirstroutingalgorithmusedintheInternet,isaversionofthedistance-vectoralgorithmdescribedinSection3.3.5.RIP-2(describedinRFC1388[Malkin1993])wasdevelopedfromittoaccommodateseveraladditionalrequirements,includingclasslessinterdomainrouting,bettermulticastroutingandtheneedforauthenticationofRIPpacketstopreventattacksontherouters.DefaultroutesUptonow,ourdiscussionofroutingalgorithmshassuggestedthateveryroutermaintainsafullroutingtableshowingtheroutetoeverydestination(subnetordirectlyconnectedhost)intheInternet.AtthecurrentscaleoftheInternetthisisclearlyinfeasible(thenumberofdestinationsisprobablyalreadyinexcessof1millionandstillgrowingveryrapidly).Twopossiblesolutionstothisproblemcometomind,andbothhavebeenadoptedinanefforttoalleviatetheeffectsoftheInternet’sgrowth.ThefirstsolutionistoadoptsomeformoftopologicalgroupingofIPaddresses.Priorto1993,nothingcouldbeinferredfromanIPaddressaboutitslocation.In1993,aspartofthemovetosimplifyandeconomizeontheallocationofIPaddressesthatisdiscussedbelowunderCIDR,thedecisionwastakenthatforfutureallocations,thefollowingregionallocationswouldbeapplied:Addressesto55areinEuropeAddressesto55areinNorthAmericaAddressesto55areinCentralandSouthAmericaAddressesto55areinAsiaandthePacificBecausethesegeographicalregionsalsocorrespondtowell-definedtopologicalregionsintheInternetandjustafewgatewayroutersprovideaccesstoeachregion,thisenablesasubstantialsimplificationofroutingtablesforthoseaddressranges.Forexample,arouteroutsideEuropecanhaveasingletableentryfortherangeofaddressesto55thatsendsallIPpacketswithdestinationsinthatrangeonthesameroutetothenearestEuropeangatewayrouter.Butnotethatbeforethedateofthatdecision,IPaddresseswereallocatedlargelywithoutregardtotopologyorgeography.Manyofthoseaddressesarestillinuse,andthe1993decisiondoesnothingtoreducethescaleofroutingtableentriesforthoseaddresses.Thesecondsolutiontotheroutingtablesizeexplosionprobemissimplerandveryeffective.Itisbasedontheobservationthattheaccuracyofroutinginformationcanberelaxedformostroutersaslongassomekeyrouters(thoseclosesttothebackbonelinks)haverelativelycompleteroutingtables.Therelaxationtakestheformofadefaultdestinationentryinroutingtables.ThedefaultentryspecifiesaroutetobeusedforallIPpacketswhosedestinationsarenotincludedintheroutingtable.Toillustratethis,considerFigures3.7and3.8andsupposethattheroutingtablefornodeCisalteredtoshow:
ThusnodeCisignorantofnodesAandD.Itwillrouteallpacketsaddressedtothemvialink5toE.Whatistheconsequence?PacketsaddressedtoDwillreachtheirdestinationwithoutlossofefficiencyinrouting,butpacketsaddressedtoAwillmakeanextrahop,passingthroughEandBontheway.Ingeneral,theuseofdefaultroutingstradesroutingefficiencyfortablesize.Butinsomecases,especiallywherearouterisonaspur,sothatalloutwardmessagesmustpassthroughasinglepoint,thereisnolossofefficiency.ThedefaultroutingschemeisheavilyusedinInternetrouting;nosinglerouterholdsroutestoalldestinationsintheInternet.RoutingonalocalsubnetPacketsaddressedtohostsonthesamenetworkasthesenderaretransmittedtothedestinationhostinasinglehop,usingthehostidentifierpartoftheaddresstoobtaintheaddressofthedestinationhostontheunderlyingnetwork.TheIPlayersimplyusesARPtogetthenetworkaddressofthedestinationandthenusestheunderlyingnetworktotransmitthepackets.IftheIPlayerinthesendingcomputerdiscoversthatthedestinationisonadifferentnetwork,itmustsendthemessagetoalocalrouter.ItusesARPtogetthenetworkaddressofthegatewayorrouterandthenusestheunderlyingnetworktotransmitthepackettoit.GatewaysandroutersareconnectedtotwoormorenetworksandtheyhaveseveralInternetaddresses,oneforeachnetworktowhichtheyareattached.Classlessinterdomainrouting(CIDR)TheshortageofIPaddressesreferredtoinSection3.4.1ledtotheintroductionin1996ofthisschemeforallocatingaddressesandmanagingtheentriesinroutingtables.ThemainproblemwasascarcityofClassBaddresses–thoseforsubnetswithmorethan255hostsconnected.PlentyofClassCaddresseswereavailable.TheCIDRsolutionforthisproblemistoallocateabatchofcontiguousClassCaddressestoasubnetrequiringmorethan255addresses.TheCIDRschemealsomakesitpossibletosubdivideaClassBaddressspaceforallocationtomultiplesubnets.3.4.4IPversion6AmorepermanentsolutiontotheaddressinglimitationsofIPv4wasalsopursued,andthisledtothedevelopmentandadoptionofanewversionoftheIPprotocolwithsubstantiallylargeraddresses.TheIETFnoticedthepotentialproblemsarisingfromthe32-bitaddressesofIPv4asearlyas1990andinitiatedaprojecttodevelopanewversionoftheIPprotocol.IPv6wasadoptedbytheIETFin1994andastrategyformigrationtoitwasrecommended.Figure3.19showsthelayoutofIPv6headers.Wedonotproposetocovertheirconstructionindetailhere.Addressspace:IPv6addressesare128bits(16bytes)long.Thisprovidesforatrulyastronomicalnumberofaddressableentities:2128,orapproximately3u1038.Tanenbaumcalculatesthatthisissufficienttoprovide7u1023IPaddressespersquaremetreacrosstheentiresurfaceoftheEarth.TheIPv6addressspaceispartitioned.Wecannotdetailthepartitioninghere,buteventheminorpartitionsarefarlargerthanthetotalIPv4space.Routingspeed:ThecomplexityofthebasicIPv6headerandtheprocessingrequiredateachnodearereduced.Nochecksumisappliedtothepacketcontent(payload),andnofragmentationcanoccuronceapackethasbegunitsjourney.Theformerisconsideredacceptablebecauseerrorscanbedetectedathigherlevels(TCPdoesincludeacontentchecksum),andthelatterisachievedbysupportingamechanismfordeterminingthesmallestMTUbeforeapacketistransmitted.Multicastandanycast:BothIPv4andIPv6includesupportforthetransmissionofIPpacketstomultiplehostsusingasingleaddress(onethatisintherangereservedforthepurpose).TheIProutersarethenresponsibleforroutingthepackettoallofthehoststhathavesubscribedtothegroupidentifiedbytherelevantaddress.3.4.6TCPandUDPTCPandUDPprovidethecommunicationcapabilitiesoftheInternetinaformthatisusefulforapplicationprograms.Applicationdevelopersmightwishforothertypesoftransportservice,forexampletoprovidereal-timeguaranteesorsecurity,butsuchserviceswouldgenerallyrequiremoresupportinthenetworklayerthanIPv4provides.TCPandUDPcanbeviewedasafaithfulreflectionattheapplicationprogramminglevelofthecommunicationfacilitiesthatIPv4hastooffer.Chapter4describesthecharacteristicsofbothTCPandUDPfromthepointofviewofdistributedprogramdevelopers.Hereweshallbequitebrief,describingonlythefunctionalitythattheyaddtoIP.Useofports:Thefirstcharacteristictonoteisthat,whereasIPsupportscommunicationbetweenpairsofcomputers(identifiedbytheirIPaddresses),TCPandUDP,astransportprotocols,mustprovideprocess-to-processcommunication.Thisisaccomplishedbytheuseofports.Portnumbersareusedforaddressingmessagestoprocesseswithinaparticularcomputerandarevalidonlywithinthatcomputer.Aportnumberisa16-bitinteger.OnceanIPpackethasbeendeliveredtothedestinationhost,theTCP-orUDP-layersoftwaredispatchesittoaprocessviaaspecificportatthathost.UDPfeatures:
UDPisalmostatransport-levelreplicaofIP.AUDPdatagramisencapsulatedinsideanIPpacket.Ithasashortheaderthatincludesthesourceanddestinationportnumbers(thecorrespondinghostaddressesarepresentintheIPheader),alengthfieldandachecksum.UDPoffersnoguaranteeofdelivery.WehavealreadynotedthatIPpacketsmaybedroppedbecauseofcongestionornetworkerror.UDPaddsnoadditionalreliabilitymechanismsexceptthechecksum,whichisoptional.Ifthechecksumfieldisnon-zero,thereceivinghostcomputesacheckvaluefromthepacketcontentsandcomparesitwiththereceivedchecksum;packetsforwhichtheydonotmatcharedropped.TCPfeatures:TCPprovidesamuchmoresophisticatedtransportservice.Itprovidesreliabledeliveryofarbitrarilylongsequencesofbytesviastream-basedprogrammingabstraction.ThereliabilityguaranteeentailsthedeliverytothereceivingprocessofallofthedatapresentedtotheTCPsoftwarebythesendingprocess,inthesameorder.TCPisconnection-oriented.Beforeanydataistransferred,thesendingandreceivingprocessesmustcooperateintheestablishmentofabidirectionalcommunicationchannel.Theconnectionissimplyanend-to-endagreementtoperformreliabledatatransmission;intermediatenodessuchasroutershavenoknowledgeofTCPconnections,andtheIPpacketsthattransferthedatainaTCPtransmissiondonotnecessarilyallfollowthesameroute.TheTCPlayerincludesadditionalmechanisms(implementedoverIP)tomeetthereliabilityguarantees.Theseare:Sequencing:ATCPsendingprocessdividesthestreamintoasequenceofdatasegmentsandtransmitsthemasIPpackets.AsequencenumberisattachedtoeachTCPsegment.Itgivesthebytenumberwithinthestreamforthefirstbyteofthesegment.Thereceiverusesthesequencenumberstoorderthereceivedsegmentsbeforeplacingthemintheinputstreamatthereceivingprocess.Flowcontrol:Thesendertakescarenottooverwhelmthereceiverortheinterveningnodes.Thisisachievedbyasystemofsegmentacknowledgements.Wheneverareceiversuccessfullyreceivesasegment,itrecordsitssequencenumber.Fromtimetotimethereceiversendsanacknowledgementtothesender,givingthesequencenumberofthehighest-numberedsegmentinitsinputstreamtogetherwithawindowsize.Retransmission:Thesenderrecordsthesequencenumbersofthesegmentsthatitsends.Whenitreceivesanacknowledgementitnotesthatthesegmentsweresuccessfullyreceived,anditmaythendeletethemfromitsoutgoingbuffers.Ifanysegmentisnotacknowledgedwithinaspecifiedtimeout,thesenderretransmitsit.Buffering:Theincomingbufferatthereceiverisusedtobalancetheflowbetweenthesenderandthereceiver.Ifthereceivingprocessissuesreceiveoperationsmoreslowlythanthesenderissuessendoperations,thequantityofdatainthebufferwillgrow.Usuallyitisextractedfromthebufferbeforeitbecomesfull,butultimatelythebuffermayoverflow,andwhenthathappensincomingsegmentsaresimplydroppedwithoutrecordingtheirarrival.Theirarrivalisthereforenotacknowledgedandthesenderisobligedtoretransmitthem.Checksum:Eachsegmentcarriesachecksumcoveringtheheaderandthedatainthesegment.Ifareceivedsegmentdoesnotmatchitschecksum,thesegmentisdropped.3.4.8FirewallsAlmostallorganizationsneedInternetconnectivityinordertoprovideservicestotheircustomersandotherexternalusersandtoenabletheirinternaluserstoacces
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新生兒高膽紅素血癥與熱性驚厥護(hù)理知識(shí)測試題附答案
- 北師大版七年級(jí)數(shù)學(xué)上冊(cè)《5.1認(rèn)識(shí)方程》同步練習(xí)題及答案
- 2025年襄陽初中入學(xué)試卷及答案
- 2025年江蘇污水處理試題及答案
- 2025年建筑資質(zhì)考試試題及答案
- 老師班級(jí)模擬考試題及答案
- 團(tuán)員考核知識(shí)題庫及答案
- 化學(xué)物質(zhì)性質(zhì)(如漂白性)辨析試題
- 化學(xué)方程式中物質(zhì)的量計(jì)算試題
- 2025年高考物理整體法與隔離法應(yīng)用試題
- 師范生實(shí)習(xí)安全教育
- 2025年上海市高考英語熱點(diǎn)復(fù)習(xí):六選四句子還原之說明文(上)
- 吉林地區(qū)普通高中2023-2024學(xué)年高三年級(jí)上學(xué)期數(shù)學(xué)第一次模擬試卷(含答案)
- 電話接線員培訓(xùn)
- 初中物理實(shí)驗(yàn)探究式教學(xué)策略研究結(jié)題報(bào)告
- 藥品經(jīng)營質(zhì)量管理規(guī)范
- 2024年秋季新教材三年級(jí)上冊(cè)PEP英語教學(xué)課件:含視頻音頻U3-第1課時(shí)-A
- 公安涉警輿情課件
- 醫(yī)院培訓(xùn)課件:《類風(fēng)濕關(guān)節(jié)炎的治療與康復(fù)》
- DB34∕T 3790-2021 智慧藥房建設(shè)指南
- 實(shí)驗(yàn)小學(xué)六年級(jí)上學(xué)期素養(yǎng)競賽語文試卷(有答案)
評(píng)論
0/150
提交評(píng)論