2022-2023學(xué)年四川省自貢市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)
2022-2023學(xué)年四川省自貢市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)
2022-2023學(xué)年四川省自貢市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)
2022-2023學(xué)年四川省自貢市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)
2022-2023學(xué)年四川省自貢市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年四川省自貢市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.A.A.

B.

C.

D.不能確定

2.A.A.

B.

C.

D.

3.下列等式成立的是

A.A.

B.B.

C.C.

D.D.

4.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

5.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是

A.

B.f(x)=(x-4)2,x∈[-2,4]

C.

D.f(x)=|x|,x∈[-1,1]

6.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0

B.△<dy<0

C.dy>Ay>0

D.dy<△y<0

7.A.

B.x2

C.2x

D.

8.

A.1

B.

C.0

D.

9.A.e-1dx

B.-e-1dx

C.(1+e-1)dx

D.(1-e-1)dx

10.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

11.

12.微分方程y+y=0的通解為().A.A.

B.

C.

D.

13.

14.設(shè)y1(x),y2(x)二階常系數(shù)線性微分方程y+py+qy=0的兩個(gè)線性無(wú)關(guān)的解,則它的通解為()A.A.y1(x)+c2y2(x)

B.c1y1(x)+y2(x)

C.y1(x)+y2(x)

D.c1y1(x)+c2y2(x)注.c1,C2為任意常數(shù).

15.

16.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x

B.(Ax+B)e2x

C.Ax2e2x

D.x(Ax+B)e2x

17.

18.()。A.2πB.πC.π/2D.π/419.設(shè)等于()A.A.-1B.1C.-cos1D.1-cos120.一端固定,一端為彈性支撐的壓桿,如圖所示,其長(zhǎng)度系數(shù)的范圍為()。

A.μ<0.7B.μ>2C.0.7<μ<2D.不能確定

21.設(shè)y=2x3,則dy=()

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

22.

23.當(dāng)x→0時(shí),2x+x2與x2比較是A.A.高階無(wú)窮小B.低階無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小

24.

25.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。

A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)

B.勻速直線運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為

C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為

D.增大靜變形是減小沖擊載荷的主要途徑

26.

27.

28.

29.

30.()。A.為無(wú)窮小B.為無(wú)窮大C.不存在,也不是無(wú)窮大D.為不定型

31.

A.3(x+y)

B.3(x+y)2

C.6(x+y)

D.6(x+y)2

32.績(jī)效評(píng)估的第一個(gè)步驟是()

A.確定特定的績(jī)效評(píng)估目標(biāo)B.確定考評(píng)責(zé)任者C.評(píng)價(jià)業(yè)績(jī)D.公布考評(píng)結(jié)果,交流考評(píng)意見(jiàn)

33.A.x2+C

B.x2-x+C

C.2x2+x+C

D.2x2+C

34.

35.

36.

37.

38.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2

39.

40.

41.下列關(guān)于構(gòu)建的幾何形狀說(shuō)法不正確的是()。

A.軸線為直線的桿稱為直桿B.軸線為曲線的桿稱為曲桿C.等截面的直桿稱為等直桿D.橫截面大小不等的桿稱為截面桿

42.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()

A.力系平衡

B.力系有合力

C.力系的合力偶矩等于平行四邊形ABCD的面積

D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍

43.

44.

45.

46.下列等式中正確的是()。A.

B.

C.

D.

47.

A.6xarctanx2

B.6xtanx2+5

C.5

D.6xcos2x

48.A.A.1B.2C.1/2D.-149.微分方程y'+y=0的通解為y=A.e-x+C

B.-e-x+C

C.Ce-x

D.Cex

50.()。A.sinx+ccosx

B.sinx-xcosx

C.xcosx-sinx

D.-(sinx+xcosx)

二、填空題(20題)51.設(shè)f(x)=esinx,則=________。52.53.

54.55.

56.

57.

58.

59.

60.

61.

62.微分方程y'+9y=0的通解為_(kāi)_____.63.64.65.設(shè)y=sin(2+x),則dy=.

66.

67.

68.若當(dāng)x→0時(shí),2x2與為等價(jià)無(wú)窮小,則a=______.69.70.三、計(jì)算題(20題)71.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).72.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.73.證明:74.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.75.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.76.求曲線在點(diǎn)(1,3)處的切線方程.

77.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

78.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

79.

80.

81.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.82.83.84.求微分方程的通解.85.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

86.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則87.

88.求微分方程y"-4y'+4y=e-2x的通解.

89.

90.

四、解答題(10題)91.

92.

93.計(jì)算,其中D是由y=x,y=2,x=2與x=4圍成.

94.

95.

96.97.98.用洛必達(dá)法則求極限:99.

100.五、高等數(shù)學(xué)(0題)101.

在t=1處的切線方程_______。

六、解答題(0題)102.

參考答案

1.B

2.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

3.C本題考查了函數(shù)的極限的知識(shí)點(diǎn)

4.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

5.C

6.B

7.C

8.B

9.D本題考查了函數(shù)的微分的知識(shí)點(diǎn)。

10.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

11.A

12.D本題考查的知識(shí)點(diǎn)為-階微分方程的求解.

可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.

解法1將方程認(rèn)作可分離變量方程.

解法2將方程認(rèn)作-階線性微分方程.由通解公式可得

解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:

特征方程為r+1=0,

特征根為r=-1,

13.C

14.D

15.C解析:

16.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:

若自由項(xiàng)f(x)=Pn(x)eαx,當(dāng)α不為特征根時(shí),可設(shè)特解為

y*=Qn(x)eαx,

Qn(x)為x的待定n次多項(xiàng)式.

當(dāng)α為單特征根時(shí),可設(shè)特解為

y*=xQn(x)eαx,

當(dāng)α為二重特征根時(shí),可設(shè)特解為

y*=x2Qn(x)eαx.

所給方程對(duì)應(yīng)齊次方程的特征方程為

r2-3r+2=0.

特征根為r1=1,r2=2.

自由項(xiàng)f(x)=xe2x,相當(dāng)于α=2為單特征根.又因?yàn)镻n(x)為一次式,因此應(yīng)選D.

17.D解析:un、vn可能為任意數(shù)值,因此正項(xiàng)級(jí)數(shù)的比較判別法不能成立,可知應(yīng)選D。

18.B

19.B本題考查的知識(shí)點(diǎn)為可變上限的積分.

由于,從而知

可知應(yīng)選B.

20.D

21.B

22.B

23.B

24.C

25.C

26.D

27.D

28.D

29.A

30.D

31.C

因此選C.

32.A解析:績(jī)效評(píng)估的步驟:(1)確定特定的績(jī)效評(píng)估目標(biāo);(2)確定考評(píng)責(zé)任者;(3)評(píng)價(jià)業(yè)績(jī);(4)公布考評(píng)結(jié)果,交流考評(píng)意見(jiàn);(5)根據(jù)考評(píng)結(jié)論,將績(jī)效評(píng)估的結(jié)論備案。

33.B本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.

因此選B.

34.C解析:

35.B

36.C

37.B

38.A由于

可知應(yīng)選A.

39.C

40.A

41.D

42.D

43.D

44.A

45.A

46.B

47.C

48.C

49.C

50.A51.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。

52.

53.54.055.本題考查的知識(shí)點(diǎn)為:求解可分離變量的微分方程.

56.57.0

58.59.x-arctanx+C;本題考查的知識(shí)點(diǎn)為不定積分的運(yùn)算.

60.R

61.62.y=Ce-9x本題考查的知識(shí)點(diǎn)為求解可分離變量微分方程.

分離變量

兩端分別積分

lny=-9x+C1,y=Ce-9x.

63.

64.1本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。65.cos(2+x)dx

這類問(wèn)題通常有兩種解法.

解法1

因此dy=cos(2+x)dx.

解法2利用微分運(yùn)算公式

dy=d(sin(2+x))=cos(2+x)·d(2+x)=cos(2+x)dx.

66.

67.468.6;本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較.

當(dāng)于當(dāng)x→0時(shí),2x2與為等價(jià)無(wú)窮小,因此

可知a=6.

69.

70.

71.72.由二重積分物理意義知

73.

74.

75.

76.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

77.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

78.

列表:

說(shuō)明

79.80.由一階線性微分方程通解公式有

81.函數(shù)的定義域?yàn)?/p>

注意

82.

83.

84.

85.

86.由等價(jià)無(wú)窮小量的定義可知

87.

88.解:原方程對(duì)應(yīng)的齊次

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論