




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、 第二章章節(jié)(zhngji)練習 2.1.1 簡單(jindn)隨機抽樣1.對于簡單隨機抽樣,個體(gt)被抽到的機會()A相等B不相等 C不確定 D與抽取的次數有關2抽簽法中確保樣本代表性的關鍵是()A制簽 B攪拌均勻 C逐一抽取 D抽取不放回3為了了解全校240名高一學生的身高情況,從中抽取40名學生進行測量下列說法正確的是()A總體是240名學生B個體是每一個學生 C樣本是40名學生D樣本容量是404為了了解所加工的一批零件的長度,抽測了其中200個零件的長度在這個問題中,200個零件的長度是()A總體 B個體 C總體的一個樣本 D樣本容量從10個籃球中任取一個,檢驗其質量,則抽樣為()
2、簡單隨機抽樣 B不放回或放回抽樣 C隨機數表法 D有放回抽樣從總體為N的一批零件中抽取一個容量為30的樣本,若每個零件被抽取的可能性為25%,則N_.某中學為了了解高一學生的年齡情況,從所有的1200名高一學生中抽出100名調查,則樣本是_為了考察一段時間內某路口的車流量,測得每小時的平均車流量是576輛,所測時間內的總車流量是11520輛,那么,這個問題中,樣本的容量是_9某合資企業(yè)有150名職工,要從中隨機地抽出20人去參觀學習請用抽簽法和隨機數表法進行抽取,并寫出過程有同學認為隨機數表只有一張,并且讀數時,只能按照從左向右的順序讀取,否則,產生的隨機樣本就不同了,對整體的估計就不準確了,
3、你認為正確嗎? 2.1.2 系統(tǒng)抽樣1.從2009名志愿者中選取50名組成一個志愿團,若采用下面的方法選?。合扔煤唵?jindn)隨機抽樣從2009人中剔除9人,余下的2000人再按系統(tǒng)抽樣的方法進行選取,則每人入選的機會()A不全相等(xingdng)B均不相等(xingdng) C都相等 D無法確定 2中央電視臺的動畫城節(jié)目為了對本周的熱心小觀眾給予獎勵,要從確定編號的一萬名小觀眾中抽取十名幸運小觀眾,現采用系統(tǒng)抽樣的方法抽取,其組容量為()A10 B100 C1000 D10000 3下列說法錯誤的個數是()總體的個體數不多時宜用簡單隨機抽樣法;在總體均分后的每一部分進行抽樣時,采用的是
4、簡單隨機抽樣;百貨商場的抽獎活動是抽簽法;整個抽樣過程中,每個個體被抽取的機會相等A1 B2 C3 D4 4老師從全班50名同學中抽取學號為6,16,26,36,46的五名同學了解學習情況,其最有可能用到的抽樣方法是()A簡單隨機抽樣 B抽簽法 C隨機數法 D系統(tǒng)抽樣 5總體容量為203,若采用系統(tǒng)抽樣法抽樣,當抽樣間距為多少時,不需要剔除個體() A4 B5 C6 D7 6某廠將在64名員工中用系統(tǒng)抽樣的方法抽取4名參加2010年職工勞技大賽,將這64名員工編號為164,若已知8號、24號、56號在樣本中,那么樣本中另一名員工的編號為_ 7一個總體的60個個體的編號為0,1,2,59,現要從
5、中抽取一個容量為10的樣本,請根據編號按被6除余3的方法,取足樣本,則抽取的樣本號碼是_ 8一個總體中100個個體編號為0,1,2,3,99,并依次將其分為10個小組,組號為0,1,9,要用系統(tǒng)抽樣方法抽取一個容量為10的樣本,規(guī)定如果第0組(號碼09)隨機抽取的號碼為l,那么依次錯位地抽取后面各組的號碼,即第k組中抽取的號碼的個位數為(lk)或(lk10)(如果lk10),若l6,則抽取的10個號碼依次是_9為了調查某路口一個月的車流量情況,交警采用系統(tǒng)抽樣的方法,樣本間距為7,從每周中隨機抽取一天,他正好抽取的是星期日,經過調查后作出報告你認為交警這樣的抽樣方法有什么問題?應怎樣改進? 1
6、0某工廠有1003名工人,從中抽取10人參加體檢,試用(shyng)系統(tǒng)抽樣進行具體實施 2.1.3 分層抽樣1.問題(wnt):有1000個乒乓球分別裝在3個箱子(xing zi)內,其中紅色箱子內有500個,藍色箱子內有200個,黃色箱子內有300個,現從中抽取一個容量為100的樣本;從20名學生中選出3名參加座談會方法:.簡單隨機抽樣法.系統(tǒng)抽樣法.分層抽樣法其中問題與方法能配對的是()A, B, C, D,2一個單位有職工160人,其中有業(yè)務員104人,管理人員32人,后勤服務人員24人,要從中抽取一個容量為20的樣本,用分層抽樣方法抽出樣本,則在20人的樣本中管理人員人數為()A3
7、B4 C12 D73某地區(qū)為了解居民家庭生活狀況,先把居民按所在行業(yè)分為幾類,然后每個行業(yè)抽百分之一的居民家庭進行調查,這種抽樣是()A簡單隨機抽樣 B系統(tǒng)抽樣 C分層抽樣 D分類抽樣4某單位有老年人28人,中年人54人,青年人81人,為了調查他們的身體健康狀況,需要從他們中間抽取一個容量為36的樣本,合適的抽取方法是()A簡單隨機抽樣B系統(tǒng)抽樣 C分層抽樣D先從老年人中剔去一人,然后分層抽5某大學共有本科生5000人,其中一、二、三、四年級的學生數之比為4:3:2:1.要用分層抽樣的方法從所有本科生中抽取一個容量為200的樣本,則應抽三年級的學生()A80人 B40人 C60人 D20人一個
8、單位共有職工200人,其中不超過45歲的有120人,超過45歲的有80人為了調查職工的健康狀況,用分層抽樣的方法從全體職工中抽取一個容量為25的樣本,應抽取超過45歲的職工_人7某工廠(gngchng)生產A,B,C三種不同(b tn)型號的產品,產品數量之比依次為2:3:5,現用分層抽樣方法抽出一個(y )容量為n的樣本,樣本中A種型號產品有16件,那么此樣本的容量n_.8.某學院的A,B,C三個專業(yè)共有1200名學生,為了調查這些學生勤工儉學的情況,擬采用分層抽樣的方法抽取一個容量為120的樣本已知該學院的A專業(yè)有380名學生,B專業(yè)有420名學生,則從該學院的C專業(yè)應抽取_名學生 9某企
9、業(yè)有三個車間,第一車間有x人,第二車間有300人,第三車間有y人,采用分層抽樣的方法抽取一個容量為45人的樣本,第一車間被抽取20人,第三車間被抽取10人,問:這個企業(yè)第一車間、第三車間各有多少人?某單位有工程師6 人,技術員12 人,技工18 人,要從這些人中抽取一個容量為n的樣本如果采用系統(tǒng)抽樣和分層抽樣方法抽取,都不用剔除個體;如果樣本容量增加1個,則在采用系統(tǒng)抽樣時,需要在總體中先剔除1個個體,求樣本容量n. 第二章章節(jié)練習 2.2.1 用樣本的頻率分布估計總體分布1.在用樣本頻率估計總體分布的過程中,下列說法中正確的是()A總體容量越大,估計越精確 B總體容量越小,估計越精確C樣本容
10、量越大,估計越精確 D樣本容量越小,估計越精確2頻率分布直方圖中,小長方形的面積等于()A相應各組的頻數 B相應各組的頻率 C組數 D組距3已知樣本:1086101381012117 8911912910111211那么頻率0.2對應的范圍是()A5.57.5 B7.59.5 C9.511.5 D11.513.54一個(y )容量為n的樣本,分成若干組,已知某組的頻數和頻率(pnl)分別為40,0.125,則n的值為()A640B320 C240 D1605將容量為100的樣本數據,按由小到大排列分成8個小組(xioz),如下表所示:組號12345678頻數101314141513129第3組
11、的頻率和累積頻率為()A0.14和0.37 B.eq f(1,14)和eq f(1,27) C0.03和0.06 D.eq f(3,14)和eq f(6,37)6200輛汽車通過某一段公路時的時速頻率分布直方圖如圖所示,則時速在50,60)的汽車大約有_輛7某校開展“愛我汕尾、愛我家鄉(xiāng)”攝影比賽,9位評委為參賽作品A給出的分數如莖葉圖所示記分員在去掉一個最高分和一個最低分后,算得平均分為91,復核員在復核時,發(fā)現有一個數字(莖葉圖中的x)無法看清,若記分員計算無誤,則數字x應該是_.8下面是某中學2014年高考各分數段的考生人數分布表:分數頻數頻率300,400)5400,500)900.07
12、5500,600)499600,700)0.425700,800)?800,900)8則分數在700,800)的人數為_人9某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30分鐘抽取一包產品,稱其重量,分別記錄如下:甲:52,51,49,48,53,48,49;乙:60,65,40,35,25,65,60.(1)這種抽樣方法是哪一種抽樣方法?(2)畫出莖葉圖,并說明哪個車間(chjin)的產品比較穩(wěn)定10有一個容量為100的某校畢業(yè)生起始(q sh)月薪的樣本數據的分組及各組的頻數如下:起始月薪(百元)13,14)14,15)15,16)16,17)17,18)18,19)19,20)
13、20,21頻數711262315846(1)列出樣本(yngbn)的頻率分布表;(2)畫出頻率分布直方圖和頻率分布折線圖;(3)根據頻率分布估計該校畢業(yè)生起始月薪低于2000元的頻率 2.2.2 用樣本的數字特征估計總體的數字特征1.已知一組數據為20,30,40,50,50,60,70,80,其中平均數、中位數和眾數的大小關系是()A平均數中位數眾數(zhn sh) B平均數中位數眾數(zhn sh)C中位數眾數(zhn sh)平均數 D眾數中位數平均數2已知一組數據按從小到大的順序排列為1,0,4,x,6,15,且這組數據中位數為5,那么數據中的眾數為()A5B6 C4 D5.53一組數據
14、的標準差為s,將這組數據中每一個數據都擴大到原來的2倍,所得到的一組數據的方差是()A.eq f(s2,2) B4s2 C2s2 Ds24在樣本方差的計算公式s2eq f(1,10)(x120)2(x220)2(x1020)2中,數字10和20分別表示樣本的()A容量、方差 B平均數、容量 C容量、平均數 D標準差、平均數5某人5次上班途中所花時間(單位:分鐘)分別為x,y,10,11,9,已知這組數據的平均數為10,方差為2,則|xy|的值是()A1 B2 C3 D46某高校有甲、乙兩個數學興趣班,其中甲班40人,乙班50人,現分析兩個班的一次考試成績,算得甲班的平均成績?yōu)?0分,乙班的平均
15、成績?yōu)?1分,則該校數學興趣班的平均成績是_分7若40個數據的平方和是56,平均數是eq f(r(2),2),則這組數據的方差是_,標準差是 8某校甲、乙兩個班級各有5名編號為1,2,3,4,5的學生進行投籃練習,每人投10次,投中的次數如下表:則以上兩組數據的方差中較小的一個為s2_.學生1號2號3號4號5號甲班67787乙班676799高一(2)班有男生27名,女生21名,在一次物理測試中,男生的平均分82分,中位數是75分,女生的平均分是80分,中位數是80分(1)求這次測試全班平均分(精確到0.01);(2)估計全班成績在80分以下(含80分)的學生至少有多少?(3)分析男生的平均分與
16、中位數相差較大的主要原因是什么?10甲、乙兩名戰(zhàn)士在相同條件下各射靶10次,每次命中的環(huán)數分別是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分別計算以上兩組數據的平均數;(2)分別求出兩組數據的方差;(3)根據計算結果,估計一下兩名戰(zhàn)士的射擊情況 第二章章節(jié)(zhngji)練習 2.3 變量(binling)間的相關關系1.下列兩個變量(binling)具有相關關系且不是函數關系的是()A正方形的邊長與面積 B勻速行駛的車輛的行駛距離與時間C人的身高與體重 D人的身高與視力2下列關系是函數關系的是()A生產成本與生產數量 B球的表面積與體積
17、C家庭的支出與收入 D人的年齡與學習成績3如圖所示,有5組(x,y)數據,去掉哪組數據后,剩下的4組數據的線性相關系數最大()AA(1,3)BB(2,4) CC(4,5) DD(3,10)4設有一個回歸方程eq o(y,sup6()21.5x,則變量x增加一個單位時()Ay平均增加1.5個單位 By平均增加2個單位Cy平均減少1.5個單位 Dy平均減少2個單位5線性回歸方程eq o(y,sup6()eq o(a,sup6()eq o(b,sup6()x必定過()A(0,0)點B(eq xto(x),0)點 C(0,eq xto(y)點 D(eq xto(x),eq xto(y)點6正常情況下,
18、年齡在18歲到38歲的人,體重y(kg)對身高x(cm)的回歸方程為eq o(y,sup6()0.72x58.2,張剛同學(20歲)身高178cm,他的體重應該在_kg左右7下列關于回歸直線方程eq o(y,sup6()eq o(b,sup6()xeq o(a,sup6()敘述正確的是_反映eq o(y,sup6()與x之間的函數關系;反映y與x之間的函數關系;表示eq o(y,sup6()與x之間的不確定關系;表示最接近y與x之間直線關系的一條直線8下列說法:線性回歸方程適用于一切樣本和總體;線性回歸方程一般都有局限性;樣本取值的范圍會影響線性回歸方程的適用范圍;線性回歸方程得到的預測值是預
19、測變量的精確值其中正確的是_9假設關于某種設備的使用年限x(年)與所支出的修理費用y(萬元),有如下的統(tǒng)計資料:使用年限x23456維修費用y2.23.85.56.57由資料可知y與x具有線性相關關系(1)求回歸方程eq o(y,sup6()eq o(b,sup6()xeq o(a,sup6();(2)估計使用年限為10年時維修費用是多少10下表提供了某廠節(jié)能降耗技術,改造后生產甲產品(chnpn)過程中記錄的產量x(噸)與相應的生產(shngchn)能耗y(噸標準煤)的幾組對照(duzho)數據.x3456y2.5344.5(1)請畫出上表數據的散點圖;(2)請據上表提供的數據,用最小二乘法
20、求出y關于x的線性回歸方程eq o(y,sup6()eq o(b,sup6()xeq o(a,sup6();(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤,試根據(2)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低了多少噸標準煤?(參考值:32.5435464.566.5)第二章章節(jié)練習參考答案 2.1.1 簡單隨機抽樣1A 2B 3D 4C 5A 6120 7這100名學生的年齡 811520 9解(抽簽法)先把150名職工編號:1,2,3,150,把編號寫在小紙片上,揉成小球,放入一個不透明的袋子中,充分攪拌均勻后,從中逐個不放回地抽取20個小球,這樣就抽出了
21、去參觀學習的20名職工(隨機數表法)第一步,先把150名職工編號:001,002,003,150.第二步,從隨機數表中任選一個數,如第10行第4列數0.第三步,從數字0開始向右連續(xù)讀數,每3個數字為一組,在讀取的過程中,把大于150的數和與前面重復的數去掉,這樣就得到20個號碼如下:086,027,079,050,074,146,148,093,077,119,022,025,042,045,128,121,038,130,125,03310解不正確因為隨機數表的產生是隨機的,在隨機數表中,任意從某一數開始,向左、向右,向上,向下都可以讀取不同的樣本但對總體的估計相差不大 2.1.2 系統(tǒng)抽樣
22、1.C 2C 3A 4D 5D 640 7.3,9,15,21,27,33,39,45,51,578 6,17,28,39,40,51,62,73,84,95解析依題意知,第0組抽取的號碼為6,則第1組抽取的號碼應為17,第2組抽取的號碼應為28,依此類推可得:6,17,28,39,40,51,62,73,84,95.9解交警所統(tǒng)計的數據以及由此推斷出來的結論,只能代表(dibio)星期日的交通流量由于星期日是休息時間,很多人不上班,不能代表其他幾天的情況改進方法可以將所要調查(dio ch)的時間段的每一天先隨機地編號,再用系統(tǒng)抽樣方法來抽樣,或用簡單隨機抽樣法來抽樣均可10分析(fnx)(
23、由于總體容量不能被樣本容量整除,需先剔除3名工人,使得總體容量能被樣本容量整除,取keq f(1000,10)100,然后再利用系統(tǒng)抽樣的方法進行)解(1)將每個人編一個號由0001至1003;(2)利用隨機數法找到3個號,將這3個號對應的工人排除;(3)將剩余的1000名工人重新編號0001至1000;(4)分段,取間隔keq f(1000,10)100,將總體均分為10組,每組含100個工人;(5)在第一組中用簡單隨機抽樣產生編號l;(6)按編號將l,100l,200l,900l共10個號選出. 這10個號所對應的工人組成樣本2.1.3 分層抽樣1. B 2B 3C 4D 5B 610 7
24、80 8409解x20eq f(300,452010)400(人),y10eq f(300,452010)200(人)10解解法1:總體容量為6121836(人)當樣本容量是n時,由題意知,系統(tǒng)抽樣的間隔為eq f(36,n),分層抽樣的比例是eq f(n,36),抽取工程師人數為eq f(n,36)6eq f(n,6)人,技術人員人數為eq f(n,36)12eq f(n,3)人,技工人數為eq f(n,36)18eq f(n,2)人,所以n應是6的倍數,36的約數,即n6,12,18.當樣本容量為(n1)時,總體容量是35 人,系統(tǒng)抽樣的間隔為eq f(35,n1),因為eq f(35,n
25、1)必須是整數,所以n只能取6,即樣本容量n6.解法2:總體容量為6121836(人)當抽取n個個體時,不論是系統(tǒng)抽樣還是分層抽樣,都不用剔除個體,所以n應為6,12,18的公約數,n可取2,3,6. 當n2時,n13,用系統(tǒng)抽樣不需要剔除個體; 當n3時,n14,用系統(tǒng)抽樣也不需要剔除個體; 當n6時,n17,用系統(tǒng)抽樣需要剔除一個個體所以n6.2.2.1 用樣本的頻率分布估計總體分布 C 2B 3D 4B 5A 660 71 888 9解(1)該抽樣方法為系統(tǒng)抽樣法(2)莖葉圖如圖所示由圖可以看出甲車間包裝的產品重量較集中,而乙車間包裝的產品重量較分散,所以甲車間包裝的產品重量較穩(wěn)定10解
26、(1)樣本頻率分布表為(2)頻率分布直方圖和頻率分布折線圖如圖起始月薪(百元)頻數頻率13,14)70.0714,15)110.1115,16)260.2616,17)230.2317,18)150.1518,19)80.0819,20)40.0420,2160.06合計1001 (3)起始(q sh)月薪低于2000元的頻率為0.070.110.260.230.150.080.04 0.94.即起始月薪低于2000元的頻率(pnl)估計為0.94.2.2.2 用樣本(yngbn)的數字特征估計總體的數字特征D2B 3B 4C 5D 685 7.eq f(9,10);eq f(3r(10),1
27、0) 8eq f(2,5) 9解(1)由平均數公式得eq o(x,sup6()eq f(1,48)(82278021)81.13(分)(2)男生的中位數是75,至少有14人得分不超過75分 又女生的中位數是80, 至少有11人得分不超過80分 全班至少有25人得分低于80分 (3)男生的平均分與中位數的差別較大,說明男生中兩極分化現象嚴重,得分高的和低的相差較大10解(1)eq xto(x)甲7(環(huán)),eq xto(x)乙7(環(huán))(2)法1:由方差公式s2eq f(1,n)(x1eq xto(x)2(x2eq xto(x)2(xneq xto(x)2,得seq oal(2,甲)3.0,seq oal(2,乙)1.2法2:由方差公式s2eq f(1,n)(xeq oal(2,1)xeq oal(2,2)xeq oal(2,n)neq xto(x)2計算seq oal(2,甲),seq oal(2,乙),由于兩組數據都在7左右,所以選取a7.xi甲xi甲71101122330 xeq oal(2,i甲)(xi甲7)21101144990 xi乙xi乙71001101022xeq oal(2,i乙)(xi乙7)21001101044seq oal(2,甲)eq f(1,10)(xeq oal(2,1甲)xeq
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026版高考化學一輪總復習真題演練第四章非金屬及其化合物第15講氯及其重要化合物
- 2025客戶經理招聘題庫及答案
- 2024-2025學年黑龍江省牡丹江第二高級中學高一(下)期末數學試卷(含解析)
- 2025年大學生安全競賽題庫答案
- 2025年smt銷售考試試題及答案
- 2025年知識競賽題庫數理化生
- 2025年大方杯國學知識競賽題庫
- 2025年教師證知識競賽題庫
- 交叉作業(yè)安全管理協議(模板)
- 2025年改口費試題及答案
- 2025年中國鐵路呼和浩特局集團有限公司招聘高校畢業(yè)生406人(三內蒙古)筆試歷年參考題庫附帶答案詳解
- 臨床檢驗 pcr 試題答案2025版
- 分級護理管理制度培訓
- 慶祝活動證件管理辦法
- 全國博士后流動站一覽表
- 消化科常見疾病護理常規(guī)
- 2025年甘肅平涼中考數學試卷真題及答案詳解(精校打印版)
- 法蘭螺栓緊固培訓課件
- 2025年高考山東卷物理試題講評及備考策略指導(課件)
- 調度督辦事項管理制度
- 2025至2030中國民用航空運輸行業(yè)市場發(fā)展分析及發(fā)展前景與投資策略報告
評論
0/150
提交評論