北京市豐臺2021-2022學(xué)年高考數(shù)學(xué)四模試卷含解析_第1頁
北京市豐臺2021-2022學(xué)年高考數(shù)學(xué)四模試卷含解析_第2頁
北京市豐臺2021-2022學(xué)年高考數(shù)學(xué)四模試卷含解析_第3頁
北京市豐臺2021-2022學(xué)年高考數(shù)學(xué)四模試卷含解析_第4頁
北京市豐臺2021-2022學(xué)年高考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡

2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù),給出下列四個結(jié)論:函數(shù)的值域是;函數(shù)為奇函數(shù);函數(shù)在區(qū)間單調(diào)遞減;若對任意,都有成立,則的最小值為;其中正確結(jié)論的個數(shù)是( )ABCD2已知a0,b0,a+b =1,若 =,則的最小值是( )A3B4C5D63在三棱錐中,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設(shè)三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為( )ABCD4港珠澳大橋于2018年10月2刻日正式通車,它是中國境內(nèi)一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米橋面為雙向六車道高速公路,大橋通行

3、限速100km/h,現(xiàn)對大橋某路段上1000輛汽車的行駛速度進(jìn)行抽樣調(diào)查畫出頻率分布直方圖(如圖),根據(jù)直方圖估計在此路段上汽車行駛速度在區(qū)間85,90)的車輛數(shù)和行駛速度超過90km/h的頻率分別為()A300,B300,C60,D60,5點在所在的平面內(nèi),且,則( )ABCD6已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對應(yīng)的點所在的象限為( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限7已知函數(shù),若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為( )ABCD8如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內(nèi),且都垂直于棱,且,則的長為( )A4BC2D9若直線與圓相交所得弦

4、長為,則( )A1B2CD310設(shè)集合則( )ABCD11已知命題,;命題若,則,下列命題為真命題的是()ABCD12已知函數(shù)的導(dǎo)函數(shù)為,記,N. 若,則 ( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13根據(jù)記載,最早發(fā)現(xiàn)勾股定理的人應(yīng)是我國西周時期的數(shù)學(xué)家商高,商高曾經(jīng)和周公討論過“勾3股4弦5”的問題.現(xiàn)有滿足“勾3股4弦5”,其中“股”,為“弦”上一點(不含端點),且滿足勾股定理,則_.14函數(shù)的最小正周期為_;若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為_.15若四棱錐的側(cè)面內(nèi)有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數(shù)k,且動點Q的軌跡是拋物線,則當(dāng)二面角平面

5、角的大小為時,k的值為_.16曲線在點(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實數(shù)=_。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知an是一個公差大于0的等差數(shù)列,且滿足a3a5=45,a2+a6=1(I)求an的通項公式;()若數(shù)列bn滿足:,求bn的前n項和18(12分)設(shè)函數(shù),其中()當(dāng)為偶函數(shù)時,求函數(shù)的極值;()若函數(shù)在區(qū)間上有兩個零點,求的取值范圍19(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最小值為,正實數(shù)、滿足,求證:.20(12分)已知函數(shù).(1)若在上單調(diào)遞增,求實數(shù)的取值范圍;(2)若,對,恒有成立,求實數(shù)的最小值

6、.21(12分)如圖,在正四棱柱中,過頂點,的平面與棱,分別交于,兩點(不在棱的端點處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點,當(dāng)四邊形為菱形時,求長.22(10分)如圖, 在四棱錐中, 底面是矩形, 四條側(cè)棱長均相等.(1)求證:平面;(2)求證:平面平面.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】化的解析式為可判斷,求出的解析式可判斷,由得,結(jié)合正弦函數(shù)得圖象即可判斷,由得可判斷.【詳解】由題意,所以,故正確;為偶函數(shù),故錯誤;當(dāng)時,單調(diào)遞減,故正確;若對任意,都

7、有成立,則為最小值點,為最大值點,則的最小值為,故正確.故選:C.【點睛】本題考查三角函數(shù)的綜合運用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.2C【解析】根據(jù)題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】a0,b0,a+b=1,當(dāng)且僅當(dāng)時取“”號答案:C【點睛】本題考查基本不等式的應(yīng)用,“1”的應(yīng)用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是首先要判斷參數(shù)是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是最后一定要驗證等號能否成立,屬于基礎(chǔ)題.3A【解析】設(shè)的中點為O先求出外接圓

8、的半徑,設(shè),利用平面ABC,得 ,在 及中利用勾股定理構(gòu)造方程求得球的半徑即可【詳解】設(shè)的中點為O,因為,所以外接圓的圓心M在BO上.設(shè)此圓的半徑為r.因為,所以,解得.因為,所以.設(shè),易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題4B【解析】由頻率分布直方圖求出在此路段上汽車行駛速度在區(qū)間的頻率即可得到車輛數(shù),同時利用頻率分布直方圖能求行駛速度超過的頻率【詳解】由頻率分布直方圖得:在此路段上汽車行駛速度在區(qū)間的頻率為,在此路段上汽車行駛速度在區(qū)間的車輛數(shù)為:,行駛速度超過的頻率為:故選:B【點睛】本題

9、考查頻數(shù)、頻率的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題5D【解析】確定點為外心,代入化簡得到,再根據(jù)計算得到答案.【詳解】由可知,點為外心,則,又,所以因為,聯(lián)立方程可得,因為,所以,即故選:【點睛】本題考查了向量模長的計算,意在考查學(xué)生的計算能力.6B【解析】分別比較復(fù)數(shù)的實部、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對應(yīng)的點所在的象限.【詳解】因為時,所以,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第二象限.故選:B.【點睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.7C【解析】根據(jù)的零點和最值點列方程組,求得的表達(dá)式(用表示),根據(jù)在上有且只有一個最大值

10、,求得的取值范圍,求得對應(yīng)的取值范圍,由為整數(shù)對的取值進(jìn)行驗證,由此求得的最大值.【詳解】由題意知,則其中,又在上有且只有一個最大值,所以,得,即,所以,又,因此當(dāng)時,此時取可使成立,當(dāng)時,所以當(dāng)或時,都成立,舍去;當(dāng)時,此時取可使成立,當(dāng)時,所以當(dāng)或時,都成立,舍去;當(dāng)時,此時取可使成立,當(dāng)時,所以當(dāng)時,成立;綜上所得的最大值為故選:C【點睛】本小題主要考查三角函數(shù)的零點和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.8A【解析】由,兩邊平方后展開整理,即可求得,則的長可求【詳解】解:,故選:【點睛】本題考查了向量的多邊形法則、數(shù)量積的運算性

11、質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題9A【解析】將圓的方程化簡成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.10C【解析】直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.11B【解析】解:命題p:x0,ln(x+1)0,則命題p為真命題,則p為假命題;取a=1,b=2,ab,但a2b2,則命題q是假命題,則q是真命題pq是假命題,pq是真命題,pq是假命題

12、,pq是假命題故選B12D【解析】通過計算,可得,最后計算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點睛】本題考查導(dǎo)數(shù)的計算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,所以.故答案為:【點睛】本題考查向量的數(shù)量積,重點考查向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.14 【解析】直接計算得到答案,根據(jù)題意得到,解得答案.【詳解】,故,當(dāng)時,故,解得.故答案為:;.【點睛】本題考查了三角函數(shù)的周期和單

13、調(diào)性,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.15【解析】二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【詳解】解:如圖,設(shè)二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.點Q到底面的距離與到點P的距離之比為正常數(shù)k,則,動點Q的軌跡是拋物線,即則.二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.16或1【解析】利用導(dǎo)數(shù)的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點,由三角形的面

14、積公式可得所求值【詳解】的導(dǎo)數(shù)為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點為,切線與的交點為,可得,解得或?!军c睛】本題主要考查利用導(dǎo)數(shù)求切線方程,以及直線方程的運用,三角形的面積求法。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(I);()【解析】()設(shè)等差數(shù)列的公差為,則依題設(shè)由,可得由,得,可得所以可得()設(shè),則.即,可得,且所以,可知所以,所以數(shù)列是首項為4,公比為2的等比數(shù)列所以前項和考點:等差數(shù)列通項公式、用數(shù)列前項和求數(shù)列通項公式18()極小值,極大值;()或【解析】()根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)零點列表分析導(dǎo)函數(shù)符號變

15、化規(guī)律,即得極值,()先分離變量,轉(zhuǎn)化研究函數(shù),利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍【詳解】()由函數(shù)是偶函數(shù),得,即對于任意實數(shù)都成立,所以. 此時,則.由,解得. 當(dāng)x變化時,與的變化情況如下表所示: 00極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增. 所以有極小值,有極大值. ()由,得. 所以“在區(qū)間上有兩個零點”等價于“直線與曲線,有且只有兩個公共點”. 對函數(shù)求導(dǎo),得. 由,解得,. 當(dāng)x變化時,與的變化情況如下表所示: 00極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增. 又因為,所以當(dāng)或時,直線與曲線,有且只有兩個公共點. 即當(dāng)或時,函數(shù)在區(qū)間上有兩個零

16、點.【點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.19(1);(2)見解析.【解析】(1)分、三種情況解不等式,綜合可得出原不等式的的解集;(2)利用絕對值三角不等式可求得函數(shù)的最小值為,進(jìn)而可得出,再將代數(shù)式與相乘,利用基本不等式求得的最小值,進(jìn)而可證得結(jié)論成立.【詳解】(1)當(dāng)時,由,得,即,解得,此時;當(dāng)時,由,得,即,解得,此時;當(dāng)時,由,得,即,解得,此時.綜上所述,不等式的解集為;(2),當(dāng)且僅當(dāng)時取等號,所以,.所以,

17、當(dāng)且僅當(dāng),即,時等號成立,所以.所以,即.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式成立,涉及絕對值三角不等式的應(yīng)用,考查運算求解能力,屬于中等題.20(1)(2)【解析】(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構(gòu)造函數(shù)設(shè),利用求二階導(dǎo)數(shù)的方法,結(jié)合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因為在上單調(diào)遞增,所以在恒成立,即在恒成立,當(dāng)時,上式成立,當(dāng),有,需,而,故綜上,實數(shù)的取值范圍是(2)設(shè),則,令,在單調(diào)遞增,也就是在單調(diào)遞增,所以.當(dāng)即時,不符合;當(dāng)即時,符合當(dāng)即時,根據(jù)零點存在定理,使

18、,有時,在單調(diào)遞減,時,在單調(diào)遞增,成立,故只需即可,有,得,符合綜上得,實數(shù)的最小值為【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于難題.21(1)證明見解析;(2)證明見解析;(3).【解析】(1)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(2)由四邊形是平行四邊形,且,則不可能是矩形,所以與不垂直;(3)先證,可得為的中點,從而得出是的中點,可得.【詳解】(1)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(2)因為,兩點不在棱的端點處,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論