《最大公因數(shù)》教學(xué)反思15篇_第1頁
《最大公因數(shù)》教學(xué)反思15篇_第2頁
《最大公因數(shù)》教學(xué)反思15篇_第3頁
《最大公因數(shù)》教學(xué)反思15篇_第4頁
《最大公因數(shù)》教學(xué)反思15篇_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、最大公因數(shù)教學(xué)反思15篇最大公因數(shù)教學(xué)反思1學(xué)生的學(xué)習(xí)過程是一種特殊的認知過程,必須在積極主動的情況下在自己的逐步思考和探究中達到解決的目的。1、小組討論合作學(xué)習(xí)研究多了,獨立思考就有所忽視。從數(shù)學(xué)學(xué)習(xí)的本質(zhì)來說,獨立思考是主流,合作交流應(yīng)在獨立思考的基礎(chǔ)上進行。只有在獨立思考的前提下,才有交流的可能。因此,在本課設(shè)計時,求兩數(shù)的最大公約數(shù)。先讓學(xué)生課前獨立探究方法,在學(xué)生有充分獨立思考的基礎(chǔ)上再交流評價。才真正實現(xiàn)每個學(xué)生潛質(zhì)的開發(fā)和學(xué)生之間真正的差異互補。2、獨特的見解總是在主體迷戀執(zhí)著,充分自由的狀態(tài)中萌芽出來的,在教學(xué)中應(yīng)放下架子,蹲下身子來傾聽學(xué)生,相信每個學(xué)生都會有精彩的表現(xiàn)。正如

2、陶行知所說的:“學(xué)生能做許多你不能做的事,也能做許多你認為他不能做的事?!辈灰】戳撕⒆?,要對每位孩子充滿信心,從而使課堂頻頻發(fā)出精彩的光芒。如本課時在開放題的解答過程中,學(xué)生能在一些簡單的嘗試開始,從中逐步發(fā)現(xiàn)其中的規(guī)律,以至于應(yīng)用獲得的規(guī)律來實現(xiàn)問題解決的最優(yōu)化,不得不驚奇孩子能力的巨大。3、當(dāng)數(shù)學(xué)問題情境作用于思考者時就有可能展開數(shù)學(xué)思維活動,可以說,問題的設(shè)計和問題的情境的創(chuàng)設(shè)是促進數(shù)學(xué)思考的客觀性因素。讓學(xué)生在問題情境中層層推出數(shù)學(xué)思考“還有沒有其他的方法”“他的方法你認為怎樣”“你是怎么想的”鼓勵表揚敢于思索的同學(xué),錯誤的回答也是對正確知識的一種辨析過程,新知識對每個每一次學(xué)習(xí)的學(xué)

3、生都是一個發(fā)現(xiàn)、創(chuàng)造的大空間。兩個數(shù)的最大公約數(shù)的教學(xué)反思有探究就有發(fā)現(xiàn),有發(fā)現(xiàn)就是學(xué)習(xí)的成功。成功所帶來的喜悅總是進一步學(xué)習(xí)的最大動力,自主探究的課堂,為個性不同的學(xué)生的發(fā)展留下了必要的空間,讓他們都有機會表達自己的思想,以自己獨特的方式去學(xué)習(xí)數(shù)學(xué),發(fā)展知識,各自體驗到學(xué)習(xí)數(shù)學(xué)的成功感。最大公因數(shù)教學(xué)反思2公因數(shù)與最大公因數(shù)這一課教材設(shè)計了一個用邊長6厘米和4厘米正方形鋪長18厘米,寬12厘米長方形的問題,讓學(xué)生在解決實際問題中探索公因數(shù)的認識。因此,在教學(xué)中要重視通過嘗試解決問題讓學(xué)生聯(lián)系已有的知識來引入公因數(shù)的認識。使學(xué)生初步體會學(xué)習(xí)公因數(shù)在解決實際問題中有著重要作用。這節(jié)課的上課情況感

4、覺較好,課堂比較流暢,重難點也都注意到了,但是通過學(xué)生作業(yè)反饋情況來看,部分學(xué)生在尋找公因數(shù)和最大公因數(shù)時,容易出現(xiàn)漏掉因數(shù)的情況,如9的因數(shù)容易漏掉因數(shù)3等。在寫公因數(shù)的示意圖時,部分學(xué)生出現(xiàn)中間寫了公因數(shù)后,兩邊還是將所有因數(shù)都寫了進去,這一情況在預(yù)設(shè)時我雖然想到了學(xué)生會錯,也在課堂上進行了說明,但是少數(shù)學(xué)生還是出現(xiàn)了錯誤。用例舉的策略找出所有公因數(shù)的教學(xué)中,教材上有種層次不同學(xué)生可以掌握的方法參考,在這里的教學(xué)中我只是參照教材注重了這兩種方法的講解,這里教材的應(yīng)是要求學(xué)生有序地列舉就行了,不同水平的學(xué)生采用的方法可以不一樣,因此,在這部分內(nèi)容的教學(xué)時,有些學(xué)生運用了一些比較獨特的方法尋找

5、公因數(shù),教師應(yīng)該給予肯定,說明只要有序地列舉出因數(shù)來尋找公因數(shù)就可以了。但是,對于學(xué)生出現(xiàn)的各種方法可以讓學(xué)生進行對比,體會哪種方法更好,更適合自己,進而對自己的算法進行優(yōu)化。最大公因數(shù)教學(xué)反思3一、分析基礎(chǔ)知識,準確制定教學(xué)目標。本節(jié)課是在學(xué)生已經(jīng)理解和掌握因數(shù)、倍數(shù)的含義,初步學(xué)會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點的基礎(chǔ)上進行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識的重要組成部分,又是進一步學(xué)習(xí)約分和分數(shù)四則計算的基礎(chǔ)。我根據(jù)教材的編寫特點準確地制定了教學(xué)目標,即理解公因數(shù)及最大公因數(shù)的意義。知道任意兩個數(shù)都有公因數(shù);能夠采用枚舉法找到兩個數(shù)的最大公因數(shù)。通過動手、觀

6、察、思考等教學(xué)活動,從拼擺過程中發(fā)現(xiàn)公因數(shù),再通過進一步探究明確公因數(shù)及最大公因數(shù)的含義。二、在現(xiàn)實的情境中教學(xué)概念,借助直觀操作活動,經(jīng)歷概念的形成過程。以往教學(xué)公因數(shù)的概念,通常是直接找出兩個自然數(shù)的因數(shù),然后讓學(xué)生發(fā)現(xiàn)有的因數(shù)是兩個數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。而本節(jié)課注意引導(dǎo)學(xué)生通過找出已知面積的長方形的長和寬的長度,確定怎樣使這樣的兩個長方形拼成一個新的長方形。其次,引導(dǎo)學(xué)生觀察這樣的幾組數(shù)據(jù)與長方形面積之間的關(guān)系右面的這些數(shù)據(jù)都是左面這些數(shù)據(jù)的因數(shù)。三是揭示出公因數(shù)和最大公因數(shù)的含義指出用紅筆標出的這些數(shù)據(jù)是左面這兩個數(shù)的公因數(shù),找到這里面最大的一個公因數(shù),完成由形象

7、到抽象的過程,把感性認識提升為理性認識。三、把握內(nèi)涵外延,準確理解概念的含義。概念的內(nèi)涵是指這個概念的所反映的一切對象的共同的本質(zhì)屬性。公因數(shù)是幾個數(shù)公有的因數(shù),可見“幾個數(shù)公有的”是公因數(shù)的本質(zhì)屬性。因此在因數(shù)的基礎(chǔ)上學(xué)習(xí)公因數(shù),關(guān)鍵在于突出“公有”的含義。本節(jié)課突出概念的內(nèi)涵是“既是也是”即“公有”。教學(xué)中,我首先讓學(xué)生在練習(xí)本上找出12和16的因數(shù),然后借助直觀的集合圖揭示出“既是12的因數(shù),又是16的因數(shù)”這句話的含義,幫助學(xué)生進一步理解公因數(shù)和最大公因數(shù)的意義。這樣安排有兩點好處:一是學(xué)生通過操作活動,能體會公因數(shù)的實際背景,加深對抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過

8、操作和交流經(jīng)歷學(xué)習(xí)過程。概念的外延是指這個概念包含的一切對象。對具體事例是否屬于概念作出判斷,就是識別概念的外延,這對加深概念的認識很有好處。本節(jié)課我注意利用反例,來凸現(xiàn)公因數(shù)的含義。在用集合圖法來表示12和16的公因數(shù)的時候,找到填寫錯誤的學(xué)生的例子,提示學(xué)生注意:并集里填寫的是兩個數(shù)的公因數(shù),而沒有交在一起的集合圖中,只填寫這兩個數(shù)的都有的因數(shù),從而進一步明確公因數(shù)的概念。四、教學(xué)中的不足:教師的提問有時指向性不是很強,學(xué)生不能很快地明白老師的意圖,影響了學(xué)生的思考,須進一步提高。在教學(xué)“兩個長和寬都是整厘米數(shù)的長方形的面積分別是2平方厘米和3平方厘米,這兩個長方形的長、寬分別是多少?”時

9、,學(xué)生有些困難,我應(yīng)該讓學(xué)生動手在本上畫一畫,幫助學(xué)生找到,降低難度,這點考慮不周,沒有切實聯(lián)系實際。自己要學(xué)的東西還有很多,應(yīng)注意提高自身修養(yǎng)。多閱讀、多聽課,努力提高自己的教學(xué)水平,更好地為學(xué)生服務(wù)。最大公因數(shù)教學(xué)反思4這部分內(nèi)容是在學(xué)生掌握了因數(shù)、倍數(shù)概念的基礎(chǔ)上進行教學(xué)的,主要是為下續(xù)學(xué)習(xí)約分作準備。教材先創(chuàng)設(shè)了一個剪紙的問題情境,從實際生活中抽象出概念。這樣處理的好處便于揭示數(shù)學(xué)與現(xiàn)實世界的聯(lián)系,有利于學(xué)生理解公因數(shù)、最大公因數(shù)的概念及現(xiàn)實意義,也有利于培養(yǎng)學(xué)生的數(shù)學(xué)抽象能力。但是將解決問題與概念引入結(jié)合在一起,教學(xué)上自然會有一定的難度,所以我將主題圖的自由探索與嘗試選正方形的大小來

10、剪。適當(dāng)降低了一些難度并提高了教學(xué)的效率,最后的效果還是不錯的,很容易就引入了公因數(shù)和最大公因數(shù)的概念。在現(xiàn)行課標中有關(guān)求最大公因數(shù)的要求是:“能找出兩個自然數(shù)的公因數(shù)和最大公因數(shù)”。重在“找”,而現(xiàn)行教材的分子分母都比較小,學(xué)生熟練了以后都能準確的進行約分,關(guān)鍵還是在練習(xí)的力度上多下功夫。融入生活實際。我把找公因數(shù)的問題融入實際生活情景中,比如:“有兩根繩子,一根長12米,另一根長28米,要把它們截成同樣長的小段,而且沒有剩余,每段最長應(yīng)是幾米?一共截幾段?”這時學(xué)生理解了求最大公因數(shù)的方法和作用,就不難解決這一問題。結(jié)合生活實際,使學(xué)生真正體會到數(shù)學(xué)學(xué)習(xí)的價值,并清楚地知道“為什么學(xué)”,真

11、正做到了生活知識數(shù)學(xué)化。最大公因數(shù)教學(xué)反思5本節(jié)課,我從學(xué)生已有的知識和經(jīng)驗出發(fā),精心設(shè)計一個童話情境,激發(fā)了學(xué)生的學(xué)習(xí)欲望。先讓學(xué)生動手操作、自學(xué)討論,幫助王叔叔選擇地板磚。再思考探索正方形地板磚的邊長與長方形地面的長、寬之間的關(guān)系。然后用問題的形式,通過復(fù)習(xí)16和12的因數(shù),讓學(xué)生再找兩個數(shù)的因數(shù)、找兩個數(shù)的公有的因數(shù)、找兩個數(shù)公有的因數(shù)中最大的因數(shù)的過程中,發(fā)現(xiàn)用邊長1厘米、2厘米、4厘米的正方形都正好鋪滿長16厘米,寬12厘米的長方形。在此基礎(chǔ)上,引導(dǎo)學(xué)生思考1、2、4這些數(shù)和16、12有什么關(guān)系,同時揭示公因數(shù)和最大公因數(shù)的概念。總之,我在教學(xué)的過程中,不但復(fù)習(xí)鞏固舊知,讓學(xué)生在不知

12、不覺中學(xué)會了新知。而且還讓學(xué)生帶著自己的數(shù)學(xué)現(xiàn)實參與數(shù)學(xué)課堂,不斷地利用原有的經(jīng)驗背景對新的問題做出解釋。此過程中我還注意了鼓勵每一個學(xué)生參與探索,重視引發(fā)學(xué)生思考,注重學(xué)生間的交流,讓學(xué)生用自己的語言表述自己的發(fā)現(xiàn),對于有困難的學(xué)生,我從方法上作進一步指導(dǎo),小組長幫助,生生互幫等。以“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者為主。培養(yǎng)了學(xué)生動手操作的能力,使他們在愉快的學(xué)習(xí)氛圍中學(xué)會了本節(jié)課的內(nèi)容。最大公因數(shù)教學(xué)反思6日本著名數(shù)學(xué)教育家米山國藏指出:“作為知識的數(shù)學(xué)出校門不到兩年可能就忘了,唯有深深銘記在頭腦中的是數(shù)學(xué)的精神,數(shù)學(xué)的思想、研究的方法和著眼點等,這些隨時隨地發(fā)生

13、作用,使他們終身受益?!睆倪@個教學(xué)的設(shè)計中我們可以看到,教學(xué)中不只是讓學(xué)生接受一個概念知識或一種求最大公約數(shù)的方法;不只是注重數(shù)學(xué)形式層面的教學(xué),而是更重視數(shù)學(xué)發(fā)現(xiàn)層面的教學(xué),即讓學(xué)生在經(jīng)歷“數(shù)學(xué)家”解決問題的過程中去理解、去感受一種數(shù)學(xué)的思想和觀念數(shù)學(xué)化思想。學(xué)生先是感知地板磚中隱含的數(shù)學(xué),會用約數(shù)、倍數(shù)知識解釋簡單的生活現(xiàn)象,進而思考并嘗試解決畫廊內(nèi)裝飾畫的設(shè)計,學(xué)生自然會聯(lián)想到地板磚中數(shù)學(xué)知識。但是,從解釋到應(yīng)用設(shè)計,在沒有學(xué)習(xí)公約數(shù)的情況下會存在較大的難度。于是,創(chuàng)設(shè)了做數(shù)學(xué)的空間。讓他們在設(shè)計正方形的過程中,逐漸感知公約數(shù)的存在,建立了解決這種問題的數(shù)學(xué)模型。再反思與總結(jié),引導(dǎo)學(xué)生自

14、己創(chuàng)造了“公約數(shù)”與“最大公約數(shù)”的概念。數(shù)學(xué)化思想觀念是指用數(shù)學(xué)眼光去認識和處理周圍事物或數(shù)學(xué)問題,可以培養(yǎng)學(xué)生良好的“用數(shù)學(xué)”意識,使數(shù)學(xué)關(guān)系成為學(xué)生的一種思維模式。而我們的課堂中,大多還是圍繞知識就事論事,沒有從形成學(xué)生思維模式的角度去展開知識形成和問題解決的思維過程,去注重現(xiàn)代的數(shù)學(xué)思想,去隱含重要的數(shù)學(xué)方法,這樣,學(xué)生學(xué)到的只是知識的堆砌,沒有自主的發(fā)展和對數(shù)學(xué)本質(zhì)的領(lǐng)悟。最大公因數(shù)教學(xué)反思7一教學(xué)設(shè)計學(xué)科名稱:北師大版數(shù)學(xué)五年級上冊找最大公因數(shù)二所在班級情況,學(xué)生特點分析:我校地處城郊,所帶班級學(xué)生共25人,學(xué)生的思維比較活躍,比較善于提出數(shù)學(xué)問題,能在小組合作學(xué)習(xí)中主動探究知識。

15、本冊一單元,學(xué)生已經(jīng)理解了因數(shù)和倍數(shù)的意義,能用乘法算式、集合等方式列舉出一個數(shù)的因數(shù)。因此用列舉法找最大公因數(shù)沒有困難。而利用因數(shù)關(guān)系、互質(zhì)數(shù)關(guān)系找還有一定的難度。因為學(xué)生不易發(fā)現(xiàn)這兩個數(shù)具有這些關(guān)系。三教學(xué)內(nèi)容分析:教材直接呈現(xiàn)了找公因數(shù)的一般方法:先用想乘法算式的方式分別找出12和18 的因數(shù),再找出公因數(shù)和最大公因數(shù)。在此基礎(chǔ)上,引出公因數(shù)與最大公因數(shù)的概念。教材用集合的方式呈現(xiàn)探索的過程。在練習(xí)1、2中引出了用因數(shù)關(guān)系、互質(zhì)數(shù)關(guān)系找最大公因數(shù),教師要引導(dǎo)學(xué)生發(fā)現(xiàn)這個方法并會運用。教師要注意讓學(xué)生經(jīng)歷知識的形成過程,要重視引發(fā)學(xué)生的數(shù)學(xué)思考。四教學(xué)目標:知識與技能:探索找兩個數(shù)的公因數(shù)

16、的方法,會用列舉法找出兩個數(shù)的公因數(shù)和最大公因數(shù)。過程與方法:經(jīng)歷找兩個數(shù)的公因數(shù)的過程,理解公因數(shù)和最大公因數(shù)的意義。情感、態(tài)度與價值:培養(yǎng)學(xué)生對學(xué)習(xí)數(shù)學(xué)的興趣。通過觀察、分析、歸納等數(shù)學(xué)活動,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考的條理性。五教學(xué)難點分析:教學(xué)重點:探索找兩個數(shù)的公因數(shù)的方法,會用列舉法找出兩個數(shù)的公因數(shù)和最大公因數(shù)。教學(xué)難點:經(jīng)歷找兩個數(shù)的公因數(shù)的過程,理解公因數(shù)和最大公因數(shù)的意義。六教學(xué)課時:一課時七教學(xué)過程:(一)復(fù)習(xí)師:出示3×4=12,( )是12的因數(shù)。生:3和4是12的因數(shù)。(二)探究新知1、認識公因數(shù)和最大公因數(shù)(1)師:除了3和4是12的因數(shù)

17、,12的因數(shù)還有哪些?生獨立完成后匯報,板書 12的因數(shù)有:1、2、3、4、6、12。師:要找出一個數(shù)的全部因數(shù),需要注意什么?生:要一對一對有序地寫,這樣才不會遺漏。師:照這樣的方法,請你寫出18的全部因數(shù)。生獨立寫后匯報:18的因數(shù)有:1、2、3、6、9、18(此時出示集合圖)師:在這兩個圈里,應(yīng)該填上什么數(shù)?請大家完成正在書45頁上。生做后匯報師板書于圈中。(2)師:請大家找一找在12和18的因數(shù)中,有沒有相同的因數(shù),相同的因數(shù)有哪幾個。生找出12和18相同的因數(shù)有:1、2、3、6師:像這樣,既是12的因數(shù),又是18的因數(shù),我們就說這些數(shù)都是12和18的公因數(shù)。師:這里最大的公因數(shù)是幾?

18、生:最大是6。師:6就是12和18的最大公因數(shù)。這就是我們這節(jié)課學(xué)習(xí)的內(nèi)容找最大公因數(shù)。板書課題:找最大公因數(shù)(此時出示集合圖)師:中間這一區(qū)域有什么特征?應(yīng)該填什么數(shù)字?獨立思考后小組討論(生分組討論)匯報:中間區(qū)域是12的因數(shù)和18的因數(shù)的交叉區(qū)域,所填的數(shù)應(yīng)該既是12的因數(shù)又是18的因數(shù),也就是12和18的公因數(shù)填在這里。師:請大家完成這個題。(生做后訂正)2、探索找最大公因數(shù)的方法(1)列舉法剛才我們找最大公因數(shù)的方法叫做列舉法。(板書:列舉法)請大家用這種方法找出下面每組數(shù)的最大公因數(shù)。 9和15(2)利用因數(shù)關(guān)系找?guī)煟赫埓蠹曳綍?5頁,獨立完成第一題。生匯報:8的因數(shù): 1、2

19、、4、816的因數(shù): 1、2、4、8、168和16的公因數(shù): 1、2、4、88和16的最大公因數(shù)是 8師引導(dǎo)學(xué)生觀察最后一句,想想8和16之間是什么關(guān)系,與他們的最大公因數(shù)有什么關(guān)系?生獨立思考后分組討論。生匯報:8是16的因數(shù),所以8和16的最大公因數(shù)就是8。師引導(dǎo)生歸納并板書:如果較小數(shù)是較大數(shù)的因數(shù),那么較小數(shù)就是這兩個數(shù)的最大公因數(shù)。(板書:用因數(shù)關(guān)系找)練習(xí):找出下面每組數(shù)的最大公因數(shù)。 4和12 28和7 54和9(3)利用互質(zhì)數(shù)關(guān)系找?guī)煟赫埓蠹要毩⑼瓿傻诙}。生匯報:5的因數(shù): 1、57的因數(shù): 1、75和7的最大公因數(shù)是 1師引導(dǎo)學(xué)生觀察最后一句5和7之間是什么關(guān)系,與他們的最

20、大公因數(shù)有什么關(guān)系?生獨立思考后分組討論。生匯報:5和7都是質(zhì)數(shù),所以5和7的最大公因數(shù)就是1。師:像這樣只有公因數(shù)1的兩個數(shù)叫互質(zhì)數(shù)。如果兩個數(shù)是互質(zhì)數(shù),那么它們的公因數(shù)只有1。(板書:用互質(zhì)數(shù)關(guān)系找)練習(xí):找出下面每組數(shù)的最大公因數(shù)。 4和5 11和7 8和9(4)整理找最大公因數(shù)的方法師:今天我們學(xué)習(xí)了用哪些方法找最大公因數(shù)?生:列舉法,用因數(shù)關(guān)系找,用互質(zhì)數(shù)關(guān)系找。師:我們在做題時,要觀察給出的數(shù)字的特征選用不同的方法。(三)練習(xí)書46頁3、4、5題。生獨立完成,師巡視指導(dǎo)。(四)全課小結(jié)這節(jié)課你有什么收獲?八課堂練習(xí):在括號里填寫每組數(shù)的最大公因數(shù)6和18( ) 14和21( ) 1

21、5和25( )12和8( ) 16和24( ) 18和27( )9和10( ) 17和18( ) 24和25( )九作業(yè)安排:完成練習(xí)冊上的習(xí)題十 附錄(教學(xué)資料及資源):1、教師用書:北師大版五年級數(shù)學(xué)上冊2、數(shù)字卡片十一 自我問答:短除法求最大公因數(shù)在書中暫時沒有出現(xiàn),只在求最小公倍數(shù)后以“你知道嗎”的形式出現(xiàn),但這種方法我覺得很實用,不知教材的意圖是什么?究竟怎樣處理?教學(xué)反思:本節(jié)課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進行教學(xué),通過解決故事中的問題,讓學(xué)生逐層深入地懂得找公因數(shù)的基本方法。在此基礎(chǔ)上,引出公因數(shù)和最大公因數(shù)的概念,在填寫公因數(shù)時,學(xué)生往往容易出現(xiàn)重復(fù)的現(xiàn)象。在教學(xué)過

22、程中,我鼓勵孩子歸納總結(jié)找最大公因數(shù)特征和方法。先看兩個數(shù)是不是倍數(shù)關(guān)系,如果是倍數(shù)關(guān)系,那么小的那個數(shù)就是最大公因數(shù)。如果兩個數(shù)是互質(zhì)數(shù)或者是相鄰的兩個自然數(shù),那么這兩個數(shù)的最大公因數(shù)就是1。找最大公因數(shù)時,我向?qū)W生介紹了短除法,當(dāng)數(shù)字比較大時,用短除法比較簡單。最大公因數(shù)教學(xué)反思8本節(jié)課教學(xué)的內(nèi)容是認識公因數(shù)、最大因數(shù)以及求兩個數(shù)的最大公因數(shù)的方法,這些知識是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上教學(xué)的。結(jié)合本節(jié)課的特點,聯(lián)系本班學(xué)生的實際情況,教師在教學(xué)過程中做了如下的嘗試一、適時地滲透集合思想。在教學(xué)例1時,解題過程不僅呈現(xiàn)了用列舉法解決問題。還引導(dǎo)學(xué)生用集合圖來表示答案,從而滲透了集

23、合思想,為后續(xù)的學(xué)習(xí)奠定感性認識。二、關(guān)注學(xué)生探究活動的空間,將自主探究活動貫徹始終。在教學(xué)中,教師為學(xué)生創(chuàng)設(shè)了三次自主探究的機會。即一在情境中通過動手操作認識公因數(shù),二用集合圖表示因數(shù)之間的關(guān)系,三用自己的方法求出兩個數(shù)的最大公因數(shù)。在這幾次的探究活動中,教師始終積極地調(diào)動學(xué)生的情感,啟發(fā)他們主動參與,引導(dǎo)學(xué)生感知、理解,從而在腦中形成系統(tǒng)的知識體系。本節(jié)課是教學(xué)運用最大公因數(shù)的有關(guān)知識來解決生活中的實際問題。通過創(chuàng)設(shè)生活情境,讓學(xué)生借助學(xué)具擺一擺,算一算或在紙上用彩筆畫一畫的方法把出現(xiàn)的幾種情況記錄下來,既提高學(xué)生的學(xué)習(xí)積極性,也讓學(xué)生體會到新知與生活的密切聯(lián)系。同時,通過引導(dǎo)學(xué)生自主探索

24、、組織交流并驗證結(jié)論,讓學(xué)生體會獲得成功的喜悅,更加積極地探索新知,掌握所學(xué)知識。本節(jié)課的不足之處在于練習(xí)部分時間過于倉促,沒有足夠的時間讓學(xué)生交流與理解,部分學(xué)困生掌握不夠到位。這需要教師在今后教堂中合理安排時間,避免時間過于緊迫。最大公因數(shù)教學(xué)反思9公因數(shù)和最大公因數(shù)這部分內(nèi)容是在學(xué)生理解因數(shù)與倍數(shù)的相互關(guān)系,會找1100的自然數(shù)的因數(shù),并且在學(xué)習(xí)面積概念時積累了“密鋪”的活動經(jīng)驗開展教學(xué)的。對于公因數(shù)和最大公因數(shù)這樣一節(jié)概念課的教學(xué),其教學(xué)重、難點我認為就是對“公”字意義的理解,也就是如何體驗這個數(shù)既是一個數(shù)的因數(shù),又是另一個數(shù)的因數(shù),才是兩個數(shù)“公有”的因數(shù)。為了突出本節(jié)課的教學(xué)重點、

25、突破教學(xué)難點,結(jié)合我們本學(xué)期的教研主題“如何設(shè)計有效的教學(xué)活動,達成教學(xué)目標”,我主要從以下幾方面入手來嘗試教學(xué):一、重視活動體驗,讓學(xué)生經(jīng)歷數(shù)學(xué)概念的形成過程。第一次猜想:一個長方形,長4厘米,寬2厘米。如果用同樣大的邊長是整厘米數(shù)的正方形來擺,剛好擺滿沒有剩余,可以選邊長是幾厘米的正方形?讓學(xué)生帶著自己的思考去操作驗證,在操作中體會“同樣大小的正方形”、“擺滿沒有剩余”,初步感知正方形既要把長方形的長擺滿沒有剩余,又要把長方形的寬擺滿沒有剩余。第二次猜想:現(xiàn)在把長方形變大,長6厘米,寬4厘米,同樣的要求,這次正方形的邊長可以是幾厘米?學(xué)生可以熟練地操作驗證,在活動體驗和交流中進一步感知選擇

26、正方形時既要保證長方形的長擺滿沒有剩余,又要保證長方形的寬擺滿沒有剩余。第三次猜想:繼續(xù)變大,長18厘米,寬12厘米長方形,還是同樣的要求,用同樣大的小正方形來擺,剛好擺滿沒有剩余,這次可以選邊長是幾厘米的正方形呢?學(xué)生繼續(xù)操作驗證。這時學(xué)生已經(jīng)有了前兩次的操作感知,積累了充分的活動經(jīng)驗,這些活動經(jīng)驗可以支撐他們?nèi)ネ评?、想象,找到能“擺滿沒有剩余”的本質(zhì),從而從整體感知正方形邊長的規(guī)律。然后,發(fā)揮教師的主導(dǎo)作用:“我們前后共擺了三個長方形,得到了黑板上的這些數(shù)據(jù)。仔細想一想,這些正方形的邊長和什么有關(guān)?有怎樣的關(guān)系呢?”引導(dǎo)學(xué)生觀察數(shù)據(jù),發(fā)現(xiàn)規(guī)律,引出公因數(shù)和最大公因數(shù)的概念。通過創(chuàng)設(shè)以上教學(xué)

27、活動,讓學(xué)生在活動中實實在在地經(jīng)歷了公因數(shù)產(chǎn)生的過程,積累豐富的活動經(jīng)驗,充分體驗公因數(shù)的意義。二、借助幾何直觀,增進學(xué)生對概念意義的理解。通過上面的操作體驗和思考認知,學(xué)生認識了公因數(shù)和最大公因數(shù),又經(jīng)歷了找公因數(shù)和最大公因數(shù)的過程,學(xué)生能感知“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”這三個概念之間存在著一些聯(lián)系。為了幫助學(xué)生深入地理解概念,提出問題:“對比這三個概念,現(xiàn)在你能說說它們之間的聯(lián)系與區(qū)別嗎?可以選其中兩個說一說?!币龑?dǎo)學(xué)生進一步地思考。這時學(xué)生交流:“因數(shù)是一個數(shù)的,而公因數(shù)是兩個或兩個以上的數(shù)公有的”、“最大公因數(shù)首先它也是公因數(shù)中的一個,而且是公因數(shù)中最大的一個。”根據(jù)學(xué)生的交流

28、,我通過課件,借助韋恩圖形象直觀地演示了“因數(shù)”與“公因數(shù)”、“公因數(shù)”與“最大公因數(shù)”之間的關(guān)系,增進了學(xué)生對概念意義的理解。三、通過實際問題,溝通數(shù)學(xué)概念與現(xiàn)實世界的聯(lián)系。在學(xué)生充分理解區(qū)分了“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”三個概念之后,提出問題:“一根彩帶長16分米,如果要截成小段來裝飾包裝盒,要求每段一樣長且剪完沒有剩余,每段可以是幾分米?(選整分米數(shù))”學(xué)生想到:這是個用因數(shù)的知識解決的問題,求每段可以是幾分米,也就是求16的因數(shù)。這時,引導(dǎo)學(xué)生改編成一個用公因數(shù)來解決的問題,學(xué)生首先想到了少需要兩個數(shù)據(jù),于是有的學(xué)生想到可以改編成:“兩條彩帶,一條16分米,一條12分米。把它們

29、截成同樣長的小段且沒有剩余,每段可以是幾分米?(選整分米數(shù))”這樣的問題。在學(xué)生思考的過程,既是在進一步理解概念的意義,又找到了“公因數(shù)”、“最大公因數(shù)”概念的現(xiàn)實意義,培養(yǎng)了學(xué)生的數(shù)學(xué)抽象能力。一節(jié)課下來,我發(fā)現(xiàn)學(xué)生是最棒的!在不斷地實踐探索中,他們的認識不斷提升,我仿佛聽得到他們思維拔節(jié)的聲音。當(dāng)然,仔細琢磨,這節(jié)課還有很多可圈可點之處,如:1、在三次操作之后,找正方形邊長與長方形的長和寬有什么關(guān)系環(huán)節(jié),有的孩子不能用數(shù)學(xué)的眼光去觀察、去思考,還停留在操作上,這就說明作為老師,在這兩個環(huán)節(jié)之間沒有為孩子搭建起合適的橋梁,沒有幫孩子找到一個好的思維支點。2、因為操作感知時間較長,在本節(jié)課的第

30、二個知識目標找公因數(shù)和最大公因數(shù)的方法環(huán)節(jié)就沒有充分的時間將孩子的各種方法展開交流,也是個小小的遺憾。帶著原有的思考我們做了如上嘗試,然而一節(jié)課的時間是有限的,個人業(yè)務(wù)素養(yǎng)也有待提高,所以沒有做到面面俱到。好在一節(jié)課的結(jié)束并不意味著思考的終止,我又帶著實踐中的新問題上路了。期待著思考的路上,能得到更多領(lǐng)導(dǎo)、同行們的指點與批評!最大公因數(shù)教學(xué)反思10分析基礎(chǔ)知識:本單元是在學(xué)生已經(jīng)理解和掌握倍數(shù)、因數(shù)的含義,初步學(xué)會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點的基礎(chǔ)上進行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識的重要組成部分,又是進一步學(xué)習(xí)約分和通分以及分數(shù)四則計算的基礎(chǔ)。教材分兩段

31、安排教學(xué)內(nèi)容:第一段,認識公倍數(shù)、最小公倍數(shù),探索找兩個數(shù)的最小公倍數(shù)的方法;第二段,認識公因數(shù)、最大公因數(shù),探索找兩個數(shù)的最大公因數(shù)的方法。此外,在本單元的最后還安排了實踐與綜合應(yīng)用數(shù)字與信息。一、借助操作活動,經(jīng)歷概念的形成過程。以往教學(xué)公因數(shù)的概念,通常是直接找出兩個自然數(shù)的因數(shù),然后讓學(xué)生發(fā)現(xiàn)有的因數(shù)是兩個數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。本單元教材注意以直觀的'操作活動,讓學(xué)生經(jīng)歷公因數(shù)和最大公因數(shù)概念的形成過程。這樣安排有兩點好處:一是學(xué)生通過操作活動,能體會公倍數(shù)和公因數(shù)的實際背景,加深對抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程

32、。在這節(jié)課上,讓學(xué)生按要求自主操作,發(fā)現(xiàn)用邊長6厘米的正方形正好鋪滿長18厘米,寬12厘米的長方形。在發(fā)現(xiàn)結(jié)果的同時,還引導(dǎo)學(xué)生聯(lián)系除法算式進行思考,對直觀操作活動的初步抽象。再把初步發(fā)現(xiàn)的結(jié)論進行類推,發(fā)現(xiàn)用邊長1厘米、2厘米、3厘米6厘米的正方形都正好鋪滿長18厘米,寬12厘米的長方形。在此基礎(chǔ)上,引導(dǎo)學(xué)生思考1、2、3、6這些數(shù)和18、12有什么關(guān)系。這時揭示公因數(shù)和最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是又是”即“公有”。并在此基礎(chǔ)上,借助直觀的集合圖顯示公因數(shù)的意義。實實在在讓學(xué)生經(jīng)歷了概念的形成過程,效果較好。二、預(yù)設(shè)探究過程,增強學(xué)生主體意識。例3中,教師宣布游戲規(guī)則后,放手讓學(xué)

33、生動手操作,直觀感知思考原因想象延伸討論思辨明確意義。例4更是學(xué)生探究廣闊的平臺,教師拋出問題后,讓學(xué)生獨立探究。為了解決問題,學(xué)生充分調(diào)動了已有知識經(jīng)驗、方法、技能,八仙過海各顯神通,找出了各種求“12和18的公因數(shù)和最大公因數(shù)”的方法。在這個過程中,由學(xué)生自己建構(gòu)了公因數(shù)和最大公因數(shù)的概念,是真正主動探索知識的建構(gòu)者,而不是模仿者,充分的發(fā)掘了學(xué)生的自主意識,也充分體現(xiàn)了教師駕馭教材,調(diào)控學(xué)生的能力。三、重視方法和策略的滲透,提高學(xué)生學(xué)習(xí)能力。課程標準只要求在1100的自然數(shù)中,能找出10以內(nèi)兩個自然數(shù)的公倍數(shù)和最小公倍數(shù),二是只要求在1100的自然數(shù)中,能找出兩個自然數(shù)的公因數(shù)和最大公因

34、數(shù),而不是用分解質(zhì)因數(shù)的方法求出公倍數(shù)或公因數(shù)。不教學(xué)用分解質(zhì)因數(shù)的方法求最小公倍數(shù)和最大公因數(shù)還有兩個原因:一是通過列舉出兩個數(shù)的倍數(shù)或因數(shù)的方法,找出公倍數(shù)或公因數(shù)。突出對公倍數(shù)和公因數(shù)意義的理解;二是學(xué)生對用短除的形式求最大公因數(shù)和最小公倍數(shù)的算理理解有困難,減輕學(xué)生的學(xué)習(xí)負擔(dān)。所以在教學(xué)找公倍數(shù)或公因數(shù)時,應(yīng)提倡思考方法多樣化。例4教學(xué)中,學(xué)生得出了三種方法來尋找12和18的公因數(shù)和最大公因數(shù)。(當(dāng)然到底是三種還是兩種有待商榷,不過在這里,為了便于比較我們姑且稱之為三種吧)這就存在了一個方法優(yōu)化的過程,哪一種方法會更簡單?通過對比,大多數(shù)學(xué)生贊同方法二。通過討論,引導(dǎo)學(xué)生以后解決此類問

35、題時可以多運用較好的方法二。在這中間教師注意到了引導(dǎo)、小結(jié)、鼓勵,師生共同得出結(jié)論。復(fù)習(xí)題中回顧了四年級知識基礎(chǔ)、列舉法和標記法,在例3中,學(xué)生思考“還有哪些邊長整厘米的正方形紙片也能正好鋪滿這個長方形?”時就有了基礎(chǔ)。例4中,學(xué)生也知道用列舉法和標記法來解決問題。特別是用集合圖來表示因數(shù)和公因數(shù)的教學(xué)值得一提。有趣的游戲,預(yù)料中的爭執(zhí),恰到好處的體現(xiàn)了圖的妙用,圖的填法比一步步教學(xué)生如何填更有效,也更不易遺忘。練習(xí)五,第一題在填完集合圖后對公有因數(shù)和獨有因數(shù)意義的的提升,為下面的學(xué)習(xí)作了伏筆。體會初步的集合思想。練一練,并沒有局限于畫畫、,找找公因數(shù)和最大公因數(shù),而是進一步指導(dǎo)學(xué)生觀察,發(fā)現(xiàn)

36、公因數(shù)都比小的數(shù)?。?8和30中,18是小的數(shù)),在18的因數(shù)中找公因數(shù)的確更快、更好些。所以請老師們在平時的教學(xué)中也去分析、思考,把握例題和練習(xí)中每個需要提升之處,在課堂中時時注意方法和策略的滲透,較好地用實這套教材。最大公因數(shù)教學(xué)反思11本課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進行教學(xué),通過找公因數(shù)的過程,讓學(xué)生懂得找公因數(shù)的基本方法。在此基礎(chǔ)上,引出公因數(shù)和最大公因數(shù)的概念,為了加深理解,可以進一步引導(dǎo)學(xué)生觀察分析、討論,讓學(xué)生明確找兩個數(shù)公因數(shù)的方法,并對找有特征的數(shù)字的最大公因數(shù)的特殊方法有所體驗。在此過程中要注意鼓勵每一個學(xué)生參與探索,重視引發(fā)學(xué)生思考,注重學(xué)生間的交流,讓學(xué)生

37、用自己的語言表述自己的發(fā)現(xiàn),但不要歸納成固定的模式讓學(xué)生記憶。對于找公因數(shù)有困難的學(xué)生,教師要從方法上作進一步指導(dǎo)。數(shù)學(xué)課程標準指出:“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者?!痹诒竟?jié)課中,我努力將找最大公因數(shù)的概念教學(xué)課,設(shè)計成為學(xué)生探索問題,解決問題的過程,這樣設(shè)計各個環(huán)節(jié)的教學(xué)流程,體現(xiàn)了教師是組織者提供數(shù)學(xué)學(xué)習(xí)的材料;引導(dǎo)者引導(dǎo)學(xué)生利用各種途徑找到公因數(shù),最大公因數(shù);合作者與學(xué)生共同探討規(guī)律。在整個教學(xué)的過程中,學(xué)生真正成了課堂學(xué)習(xí)的主人,尋找最大公因數(shù)的方法是通過學(xué)生積極主動地探索以及不斷地中驗證得到的,所以整節(jié)課學(xué)生個性得到發(fā)揮,課堂成了學(xué)習(xí)的天地。最大公因數(shù)教學(xué)

38、反思12本節(jié)課的教學(xué)內(nèi)容是求兩個數(shù)的公因數(shù)和兩個數(shù)的最大公因數(shù)的第二課時。教學(xué)目標是進一步理解兩個數(shù)的公因數(shù)和最大公因數(shù)的意義,比較熟練地求出兩個數(shù)的最大公因數(shù),包括兩種特殊情況。這節(jié)課上的非常順利,課堂氣氛活躍,師生互動和諧,取得了較好的課堂教學(xué)效果。上課的第一環(huán)節(jié),是復(fù)習(xí)兩個數(shù)的公因數(shù)和最大公因數(shù)的意義。在復(fù)習(xí)的過程中,我不是單純地讓學(xué)生復(fù)述兩個數(shù)的公因數(shù)和最大公因數(shù)的意義,而是讓學(xué)生舉例說明。學(xué)生說出了許多組數(shù),找出了它們的公因數(shù)和最大公因數(shù)。在學(xué)生舉例的過程中,對它們的意義有了更深的理解。我擇其四組板書在黑板上:和,和,和,和。讓學(xué)生觀察,這四組數(shù)有什么特點。我的本意是讓學(xué)生發(fā)現(xiàn)兩個數(shù)

39、的最大公因數(shù)的一種特殊情況,即兩個數(shù)的公因數(shù)只有,那么它們的最大公因數(shù)就是。 “我發(fā)現(xiàn)兩個數(shù)中只要有一個質(zhì)數(shù),它們的最大公因數(shù)就是?!边@是一個大膽的猜測,雖說是出乎意料,但更使課堂充滿了生機。我讓學(xué)生判斷他的觀點是否正確。在小組討論的過程中,有學(xué)生提出了質(zhì)疑,“這個觀點不對,比如和,是質(zhì)數(shù),但它倆的最大公因數(shù)不是?!庇钟袑W(xué)生提出和,和等。我接著又讓學(xué)生觀察,這幾組數(shù)又有什么特點。通過通論觀察,完成了本節(jié)課的另一個教學(xué)任務(wù),發(fā)現(xiàn)了兩個數(shù)的最大公因數(shù)的另一種特殊情況,即兩個數(shù)是倍數(shù)關(guān)系,那么它們的最大公因數(shù)就是較小的數(shù),學(xué)生發(fā)現(xiàn)了兩個數(shù)的最大公因數(shù)的幾種情況,當(dāng)兩個數(shù)都是質(zhì)數(shù)時,它們的最大公因數(shù)是

40、;當(dāng)兩個數(shù)是連續(xù)的自然數(shù)時,它們的最大公因數(shù)是;兩個數(shù)的最大公因數(shù)是,這兩個數(shù)可以是質(zhì)數(shù),也可以是合數(shù),還可以一個是質(zhì)數(shù),一個是合數(shù),等等。最大公因數(shù)教學(xué)反思13教學(xué) 例3時先用邊長6厘米和4厘米的正方形紙片,分別鋪長18厘米、寬12厘米的長方形,教師選擇正方形紙片鋪長方形的活動教學(xué)公因數(shù),是因為這一活動能吸引學(xué)生發(fā)現(xiàn)和提出問題,能引導(dǎo)學(xué)生思考。學(xué)生用同兩張正方形紙片分別鋪一個不同的長方形,面對出現(xiàn)的兩種結(jié)果,會發(fā)現(xiàn)“為什么有時正好鋪滿、有時不能”,“什么時候正好鋪滿、什么時候不能”這些有研究價值的問題。他們沿著長方形的邊鋪正方形紙片,就會想到正好鋪滿與不能正好鋪滿的原因可能和邊長有關(guān),于是產(chǎn)

41、生進一步研究長方形邊長和正方形邊長關(guān)系的愿望。分析長方形的長、寬和正方形邊長之間的關(guān)系,按學(xué)生的認知規(guī)律,設(shè)計成兩個層次: 第一個層次聯(lián)系鋪的過程與結(jié)果,從長方形的長、寬除以正方形的邊長沒有余數(shù)和有余數(shù)的層面上,體會正好鋪滿與不能正好鋪滿的原因。第二個層次根據(jù)邊長6厘米的正方形正好鋪滿長18厘米、寬12厘米的長方形、而邊長4厘米的正方形不能正好鋪滿長18厘米、寬12厘米的長方形的經(jīng)驗,聯(lián)想邊長幾厘米的正方形還能正好鋪滿長18厘米、寬12厘米的長方形。先找到這些正方形,把它們邊長從小到大排列,知道這樣的正方形的個數(shù)是有限的。再用“既是12的因數(shù),又是18的因數(shù)”概括地描述這些正方形邊長的特征。顯

42、然,前一層次形象思維的成分較大,思考難度較小,對后一層次的抽象認識有重要的支持作用。反思:突出概念的內(nèi)涵、外延,讓學(xué)生準確理解概念。我用“既是又是”的描述,讓學(xué)生理解“公有”的意思。例3先聯(lián)系用邊長1、2、3、6厘米的正方形正好能鋪滿長18厘米、寬12厘米的長方形紙片的現(xiàn)象,從長方形的長、寬分別除以正方形邊長都沒有余數(shù),得出正方形的邊長“既是12的因數(shù),又是18的因數(shù)”,一方面概括了這些正方形邊長的特點,另一方面讓學(xué)生體會“既是又是”的意思。然后進一步概括 “1、2、3、6既是12的因數(shù),又是18的因數(shù),它們是12和18的公因數(shù)”,形成公因數(shù)的概念。由于知識的遷移,學(xué)生很容易想到用集合圖直觀形

43、象地顯示公因數(shù)的含義。第27頁把8的因數(shù)和12的因數(shù)分別寫到兩個集合圈里,這兩個集合圈有一部分重疊,在重疊部分里寫的數(shù)既是8的因數(shù),也是12的因數(shù),是8和12的公因數(shù)。先觀察這個集合圖,再填寫第28頁的集合圖,學(xué)生能進一步體會公因數(shù)的含義。概念的外延是指這個概念包括的一切對象。運用數(shù)學(xué)概念,讓學(xué)生探索找兩個數(shù)的最大公因數(shù)的方法。例4教學(xué)求兩個數(shù)的最大公因數(shù),出現(xiàn)了兩種解決問題的方法。學(xué)生有的先分別寫出8和12的因數(shù),再找出它們的公因數(shù)和最大公因數(shù)。有的在8的因數(shù)里找12的因數(shù),這樣操作比較方便,但容易遺漏。我有意引導(dǎo)學(xué)生選擇第一種。練習(xí)五的第3題就是這種方法的應(yīng)用。充分利用教育資源,自制課件,

44、協(xié)助教學(xué)。限于操作的局部性,我認真制作了實用的課件,讓直觀、清晰的頁面直接輔助我教學(xué),學(xué)生表現(xiàn)積極,課堂氣氛比較活躍,提問、釋疑、解惑,練習(xí)的熱情很高。本課設(shè)計目的是使學(xué)生學(xué)習(xí)公因數(shù)、最大公因數(shù)的意義,并學(xué)會找兩個數(shù)的最大公因數(shù)的方法,從整節(jié)課學(xué)生表現(xiàn)情況和課后作業(yè)反饋來看,學(xué)生對本部分知識知識掌握較好,學(xué)習(xí)積極并具有熱情,就實效性講很令人滿意。最大公因數(shù)教學(xué)反思14標準指出“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者?!边@一理念要求我們教師的角色必須轉(zhuǎn)變。我想教師的作用必須體現(xiàn)在以下幾個方面。一是要引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識體驗之間的關(guān)聯(lián);二是要提供把學(xué)生置于問題情景之中的機會;三是要營造一個激勵探索和理解的氣氛,為學(xué)生提供有啟發(fā)性的討論模式;四是要鼓勵學(xué)生表達,并且在加深理解的基礎(chǔ)上,對不同的答案開展討論;五是要引導(dǎo)學(xué)生分享彼此的思想和結(jié)果,并重新審視自己的想法。對照課標的理念,我對公因數(shù)與最大公因數(shù)的教學(xué)作了一點嘗試。一、引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識體驗之間的關(guān)聯(lián)。公因數(shù)與最大公因數(shù)是在公倍數(shù)和最小公倍數(shù)之后學(xué)習(xí)的一個內(nèi)容。如果我們對本課內(nèi)容作一分析的話,會發(fā)現(xiàn)這兩部分內(nèi)容無論是在教

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論