直徑所對圓周角的運用教案.doc_第1頁
直徑所對圓周角的運用教案.doc_第2頁
直徑所對圓周角的運用教案.doc_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市第三十五中學教案任課教師見欣學科數(shù)學年 級初三班 級302日 期11.23課 題直徑所對圓周角的應用課型習題課 教學目標知識與技能會構造直徑所對的圓周角,利用圓周角的性質解決相關問題。過程與方法通過解題、交流、觀察、歸納等環(huán)節(jié)使學生會構造直徑所對的圓周角,并會用圓周角的性質解決相關問題;通過變式訓練使學生在解題中鞏固方法,學會反思,提高學生的解題能力。情感態(tài)度與價值觀在解題中學會反思,培養(yǎng)反思意識和科學的思維方式。教學重點會構造直徑所對的圓周角,利用圓周角的性質解決相關問題。教學難點構造直徑所對圓周角,利用圓周角性質解決問題。教學方式講練結合教具計算機,三角板,學案板書設 計直徑所對圓周角的應用教學過程設計教師活動預設學生活動預設設計目的一、復習與回顧:1、圓周角的性質:2、例題分析:問題1:如圖,AD是ABC的高,AE是ABC的外接 圓直徑 .求證:ABAC=AEAD .3、方法小結:二、變式訓練:變式1:如圖(同問題1),已知 ABC的高AD=4,AE是ABC外接圓直徑,若AB=5,求cosCAE的值 . 變式2:如圖,AD是 ABC的高,AE是ABC外接圓直徑 . 求證:sinB sinC=變式3:如圖,AD是ABC的高,延長AD交ABC外接圓于F,連結AO并延長交BC于E .求證:AB AC = AF AE變式4:如圖,在O的內接ABC中,AB+AC=12,AD BC于D,且AD=3,設O的半徑為y,AB的長為x . (1) 用x的代數(shù)式表示y; (2) 當AB的長等于多少時, O的面積最大?并求出O的最大面積 .三、課堂小結: 四、反思提升:1、請同學們將以上三個變式同問題1做個比較,想想有何共同點?2、將問題1總結成一個有用的數(shù)學命題。3、當圓內接三角形是直角三角形和等腰三角形時,得到的結論又是什么?知識回顧學生口述解題方法當三角形ABC是鈍角三角形是結論是否改變?觀察,思考,口述方法學生思考并回答問題學生思考并回答問題,分析解題思路觀察,思考,歸納復習圓周角的性質,為本節(jié)課內容做鋪墊通過本題的解答,總結出圓中常添加的輔助線:構造直徑所對圓周角。利用剛剛總結的方法可直接解決變式1,變式2,讓學生熟悉方法,并 給更多學生參與機會。變式3,變式4沒有直接給出直徑,但稍作觀察可發(fā)現(xiàn),仍可通過構造直徑所對圓周角解決問題,鞏固了方法。突出重點,讓學生掌握基本方法使學生通過觀察一組題目,歸納、概括得到一個一般

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論