




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆江西省育華學校數(shù)學九年級第一學期期末達標檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.已知一組數(shù)據(jù)共有個數(shù),前面?zhèn)€數(shù)的平均數(shù)是,后面?zhèn)€數(shù)的平均數(shù)是,則這個數(shù)的平均數(shù)是()A. B. C. D.2.如圖,已知是的直徑,,則的度數(shù)為()A. B. C. D.3.下列式子中,y是x的反比例函數(shù)的是()A. B. C. D.4.下列計算正確的是()A.; B.; C.; D..5.已知二次函數(shù)的圖象經(jīng)過點,當自變量的值為時,函數(shù)的值為()A. B. C. D.6.如圖:已知,且,則()A.5 B.3 C.3.2 D.47.已知⊙O的直徑為12cm,如果圓心O到一條直線的距離為7cm,那么這條直線與這個圓的位置關系是()A.相離 B.相切 C.相交 D.相交或相切8.如圖,將繞著點按順時針方向旋轉,點落在位置,點落在位置,若,則的度數(shù)是()A. B. C. D.9.如圖,在中,是的直徑,點是上一點,點是弧的中點,弦于點,過點的切線交的延長線于點,連接,分別交于點,連接.給出下列結論:①;②;③點是的外心;④.其中正確的是()A.①②③ B.②③④ C.①③④ D.①②③④10.不等式的解為()A. B. C. D.11.如圖,在正方形網(wǎng)格中,已知的三個頂點均在格點上,則()A.2 B. C. D.12.菱形ABCD的一條對角線長為6,邊AB的長是方程x2﹣7x+12=0的一個根,則菱形ABCD的周長為()A.16 B.12 C.16或12 D.24二、填空題(每題4分,共24分)13.已知三角形的兩邊分別是3和4,第三邊的數(shù)值是方程x2﹣9x+14=0的根,則這個三角形的周長為_____.14.如圖,、是兩個等邊三角形,連接、.若,,,則__________.15.如圖,已知△ABC,AB=6,AC=5,D是邊AB的中點,E是邊AC上一點,∠ADE=∠C,∠BAC的平分線分別交DE、BC于點F、G,那么的值為__________.16.已知實數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡=_____.17.若關于的一元二次方程的一個根是,則的值是_________.18.如圖,AB為的直徑,弦CD⊥AB于點E,點F在圓上,且=,BE=2,CD=8,CF交AB于點G,則弦CF的長度為__________,AG的長為____________.三、解答題(共78分)19.(8分)某數(shù)學小組在郊外的水平空地上對無人機進行測高實驗.如圖,兩臺測角儀分別放在A、B位置,且離地面高均為1米(即米),兩臺測角儀相距50米(即AB=50米).在某一時刻無人機位于點C(點C與點A、B在同一平面內(nèi)),A處測得其仰角為,B處測得其仰角為.(參考數(shù)據(jù):,,,,)(1)求該時刻無人機的離地高度;(單位:米,結果保留整數(shù))(2)無人機沿水平方向向左飛行2秒后到達點F(點F與點A、B、C在同一平面內(nèi)),此時于A處測得無人機的仰角為,求無人機水平飛行的平均速度.(單位:米/秒,結果保留整數(shù))20.(8分)歡歡放學回家看到桌上有三個禮包,是爸爸送給歡歡和姐姐的禮物,其中禮包是芭比娃娃,和禮包都是智能對話機器人.這些禮包用外表一樣的包裝盒裝著,看不到里面的禮物.(1)歡歡隨機地從桌上取出一個禮包,取出的是芭比娃娃的概率是多少?(2)請用樹狀圖或列表法表示歡歡隨機地從桌上取出兩個禮包的所有可能結果,并求取出的兩個禮包都是智能對話機器人的概率.21.(8分)如圖1,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點.(1)求拋物線的函數(shù)表達式;(2)若點P是位于直線BC上方拋物線上的一個動點,求△BPC面積的最大值;(3)若點D是y軸上的一點,且以B,C,D為頂點的三角形與相似,求點D的坐標;(4)若點E為拋物線的頂點,點F(3,a)是該拋物線上的一點,在軸、軸上分別找點M、N,使四邊形EFMN的周長最小,求出點M、N的坐標.22.(10分)如圖1,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于點C.(1)求拋物線的解析式及其頂點Q的坐標;(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最小,請在圖中畫出點P的位置,并求點P的坐標;(3)如圖2,若點D是第一象限拋物線上的一個動點,過D作DE⊥x軸,垂足為E.①有一個同學說:“在第一象限拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠,所以當點D運動至點Q時,折線D-E-O的長度最長”,這個同學的說法正確嗎?請說明理由.②若DE與直線BC交于點F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標;若不能,請簡要說明理由.23.(10分)如圖:反比例函數(shù)的圖象與一次函數(shù)的圖象交于、兩點,其中點坐標為.(1)求反比例函數(shù)與一次函數(shù)的表達式;(2)觀察圖象,直接寫出當時,自變量的取值范圍;(3)一次函數(shù)的圖象與軸交于點,點是反比例函數(shù)圖象上的一個動點,若,求此時點的坐標.24.(10分)已知反比例函數(shù)y=(1)若該反比例函數(shù)的圖象與直線y=kx+4(k≠0)只有一個公共點,求k的值;(2)如圖,反比例函數(shù)y=(1≤x≤4)的圖象記為曲線Cl,將Cl向左平移2個單位長度,得曲線C2,請在圖中畫出C2,并直接寫出C1平移至C2處所掃過的面積.25.(12分)已知二次函數(shù).(1)將二次函數(shù)化成的形式;(2)在平面直角坐標系中畫出的圖象;(3)結合函數(shù)圖象,直接寫出時x的取值范圍.26.在中,,,,點從出發(fā)沿方向在運動速度為3個單位/秒,點從出發(fā)向點運動,速度為1個單位/秒,、同時出發(fā),點到點時兩點同時停止運動.(1)點在線段上運動,過作交邊于,時,求的值;(2)運動秒后,,求此時的值;(3)________時,.
參考答案一、選擇題(每題4分,共48分)1、C【分析】由題意可以求出前14個數(shù)的和,后6個數(shù)的和,進而得到20個數(shù)的總和,從而求出20個數(shù)的平均數(shù).【詳解】解:由題意得:(10×14+15×6)÷20=11.5,故選:C.此題考查平均數(shù)的意義和求法,求出這些數(shù)的總和,再除以總個數(shù)即可..2、B【分析】根據(jù)同弧所對的圓周角相等可得∠E=∠B=40°,再根據(jù)直徑所對的圓周角是直角得到∠ACE=90°,最后根據(jù)直角三角形兩銳角互余可得結論.【詳解】∵在⊙O中,∠E與∠B所對的弧是,∴∠E=∠B=40°,∵AE是⊙O的直徑,∴∠ACE=90°,∴∠AEC=90°-∠E=90°-40°=50°,故選:B.此題主要考查了圓周角定理以及直徑所對的圓周角是直角和直角三角形兩銳角互余等知識,求出∠E=40°,是解此題的關鍵.3、C【分析】根據(jù)反比例函數(shù)的定義,反比例函數(shù)的一般式是y=(k≠0),即可判定各函數(shù)的類型是否符合題意.【詳解】A、是正比例函數(shù),錯誤;B、不是反比例函數(shù),錯誤;C、是反比例函數(shù),正確;D、不是反比例函數(shù),錯誤.故選:C.本題考查反比例函數(shù)的定義特點,反比例函數(shù)解析式的一般形式為:y=(k≠0).4、B【解析】分析:分別根據(jù)次根式的加減運算法則以及合并同類項的法則、冪的乘方與積的乘方法則及同底數(shù)冪的除法法則對各選項進行逐一判斷即可.詳解:A.與不是同類項,不能合并,故本選項錯誤;B.,故本選項正確;C.,故本選項錯誤;D.,故本選項錯誤.故選:B.點睛:此題考查了二次根式的加減運算以及合并同類項、積的乘方運算和同底數(shù)冪的除法法則運算等知識,正確掌握運算法則是解題的關鍵.5、B【分析】把點代入,解得的值,得出函數(shù)解析式,再把=3即可得到的值.【詳解】把代入,得,解得=把=3,代入==-4故選B.本題考查了二次函數(shù)的解析式,直接將坐標代入法是解題的關鍵.6、C【分析】根據(jù)平行線分線段成比例定理列出比例式,代入數(shù)值進行計算即可.【詳解】解:∵AD∥BE∥CF∴∵AB=4,BC=5,EF=4∴∴DE=3.2故選C本題考查平行線分線段成比例定理,找準對應關系是解答此題的關鍵.7、A【分析】這條直線與這個圓的位置關系只要比較圓心到直線的距離與半徑的大小關系即可.【詳解】∵⊙O的直徑為12cm,∴⊙O的半徑r為6cm,如果圓心O到一條直線的距離d為7cm,d>r,這條直線與這個圓的位置關系是相離.故選擇:A.本題考查直線與圓的位置關系問題,掌握點到直線的距離與半徑的關系是關鍵.8、C【解析】由旋轉可知∠BAC=∠A’,∠A’CA=20°,據(jù)此可進行解答.【詳解】解:由旋轉可知∠BAC=∠A’,∠A’CA=20°,由AC⊥A’B’可得∠BAC=∠A’=90°-20°=70°,故選擇C.本題考查了旋轉的性質.9、B【分析】①由于與不一定相等,根據(jù)圓周角定理可判斷①;
②連接OD,利用切線的性質,可得出∠GPD=∠GDP,利用等角對等邊可得出GP=GD,可判斷②;
③先由垂徑定理得到A為的中點,再由C為的中點,得到,根據(jù)等弧所對的圓周角相等可得出∠CAP=∠ACP,利用等角對等邊可得出AP=CP,又AB為直徑得到∠ACQ為直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P為直角三角形ACQ斜邊上的中點,即為直角三角形ACQ的外心,可判斷③;
④正確.證明△APF∽△ABD,可得AP×AD=AF×AB,證明△ACF∽△ABC,可得AC2=AF×AB,證明△CAQ∽△CBA,可得AC2=CQ×CB,由此即可判斷④;【詳解】解:①錯誤,假設,則,,,顯然不可能,故①錯誤.②正確.連接.是切線,,,,,,,,,故②正確.③正確.,,,,,,是直徑,,,,,,,點是的外心.故③正確.④正確.連接.,,,,,,,,可得,,,,可得,.故④正確,故選:.本題考查相似三角形的判定和性質、垂徑定理、圓周角定理、切線的性質等知識,解題的關鍵是正確現(xiàn)在在相似三角形解決問題,屬于中考選擇題中的壓軸題.10、B【分析】根據(jù)一元一次不等式的解法進行求解即可.【詳解】解:移項得,,合并得,,系數(shù)化為1得,.故選:B.本題考查一元一次不等式的解法,屬于基礎題型,明確解法是關鍵.11、B【分析】過C點作CD⊥AB,交AB的延長線于D點,則CD=1,AC=,在直角三角形ACD中即可求得的值.【詳解】過C點作CD⊥AB,交AB的延長線于D點,則CD=1,AC=在直角三角形ACD中故選:B本題考查的是網(wǎng)格中的銳角三角函數(shù),關鍵是創(chuàng)造直角三角形,盡可能的把直角三角形的頂點放在格點.12、A【分析】先利用因式分解法解方程得到x1=3,x2=4,再根據(jù)菱形的性質可確定邊AB的長是4,然后計算菱形的周長.【詳解】(x﹣3)(x﹣4)=0,x﹣3=0或x﹣4=0,所以x1=3,x2=4,∵菱形ABCD的一條對角線長為6,∴邊AB的長是4,∴菱形ABCD的周長為1.故選A.本題考查菱形的性質和解一元二次方程-因式分解法,解題的關鍵是掌握菱形的性質和解一元二次方程-因式分解法.二、填空題(每題4分,共24分)13、1.【分析】求出方程的解,再看看是否符合三角形三邊關系定理即可解答.【詳解】∵x2﹣1x+14=0,∴(x﹣2)(x﹣7)=0,則x﹣2=0或x﹣7=0,解得x=2或x=7,當x=2時,三角形的周長為2+3+4=1;當x=7時,3+4=7,不能構成三角形;故答案為:1.本題考查解一元二次方程和三角形三邊關系定理的應用,解題的關鍵是確定三角形的第三邊.14、1【分析】連接AC,證明△ADC≌△BDE,則AC=BE,在Rt△ABC中,利用勾股定理可求解問題.【詳解】連接AC,根據(jù)等邊三角形的性質可知AD=BD,ED=CD,∠ADB=∠EDC=60°.∴∠ADC=∠BDE.∴△ADC≌△BDE(SAS).∴AC=BE.∵∠ABC=∠ABD+∠DBC=60°+30°=90°,∴在Rt△ABC中,利用勾股定理可得AC==1.故答案為:1.本題主要考查了全等三角形的判定和性質、等邊三角形的性質、勾股定理,在應用全等三角形的判定時,要注意三角形間的公共邊和公共角,必要時添加適當輔助線構造三角形.15、【分析】由題中所給條件證明△ADF△ACG,可求出的值.【詳解】解:在△ADF和△ACG中,AB=6,AC=5,D是邊AB的中點AG是∠BAC的平分線,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案為.本題考查了相似三角形的判定和性質,難度適中,需熟練掌握.16、﹣a+b【分析】根據(jù)數(shù)軸判斷出a、b、c的正負情況以及絕對值的大小,然后根據(jù)絕對值和二次根式的性質去掉根號和絕對值號,再進行計算即可得解.【詳解】解:由圖可知:a<b<0<c,而且,
∴a+c<0,b+c<0,
∴,
故答案為:.本題考查了二次根式的性質與化簡,絕對值的性質,根據(jù)數(shù)軸判斷出a、b、c的情況是解題的關鍵.17、1【分析】先利用一元二次方程根的定義得到a-b=﹣4,再把2019﹣a+b變形為2019﹣(a-b),然后利用整體代入的方法計算.【詳解】把代入一元二次方程,得:,即:,∴,故答案為:1.本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.18、;【分析】如圖(見解析),連接CO、DO,并延長DO交CF于H,由垂徑定理可知CE,在中,可以求出半徑CO的長;又由=和垂徑定理得,根據(jù)圓周角定理可得,從而可知,在中可求出FG,也就可求得CF的長度;在中利用勾股定理求出DH,再求出,同樣地,在中利用余弦函數(shù)求出OG,從而可求得.【詳解】,,,(垂徑定理)連接,設,則在中,解得,連接DO并延長交CF于H=,由垂徑定理可知,是所對圓周角,是所對圓心角,且=2,,由勾股定理得:,.本題考查了垂徑定理、圓周角定理、直角三角形中的余弦三角函數(shù),通過構造輔助線,利用垂徑定理和圓周角定理是解題關鍵.三、解答題(共78分)19、(1)無人機的高約為19m;(2)無人機的平均速度約為5米/秒或26米/秒【分析】(1)如圖,過點作,垂足為點,設,則.解直角三角形即可得到結論;(2)過點作,垂足為點,解直角三角形即可得到結論.【詳解】解:(1)如圖,過點作,垂足為點.∵,∴.設,則.∵在Rt△ACH中,,∴.∴.解得:∴.答:計算得到的無人機的高約為19m.(2)過點F作,垂足為點.在Rt△AGF中,.FG=CH=18,∴.又.∴或.答:計算得到的無人機的平均速度約為5米/秒或26米/秒.本題考查解直角三角形的應用,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.20、(1);(2)【分析】(1)根據(jù)一共三個禮包,芭比娃娃的禮包占一種即可計算概率;(2)列出所有可能的結果,再找到符合要求的個數(shù),即可得到概率.【詳解】(1)根據(jù)題意,可知取出的是芭比娃娃的概率是.(2)結果:,,,,,,由圖可知,共有6種等可能的結果,而符合要求的是,兩種,∴取出的兩個禮包都是智能機器人的概率是.本題考查了列表法或樹狀法求概率,正確列出所有可能結果是解題的關鍵.21、(1);(2)△BPC面積的最大值為;(3)D的坐標為(0,1)或(0,);(4)M(,0),N(0,)【分析】(1)拋物線的表達式為:y=a(x+1)(x-5)=a(x2-4x-5),即-5a=5,解得:a=-1,即可求解;(2)利用S△BPC=×PH×OB=(-x2+4x+5+x-5)=(x-)2+,即可求解;(3)B、C、D為頂點的三角形與△ABC相似有兩種情況,分別求解即可;(4)作點E關于y軸的對稱點E′(-2,9),作點F(2,9)關于x軸的對稱點F′(3,-8),連接E′、F′分別交x、y軸于點M、N,此時,四邊形EFMN的周長最小,即可求解.【詳解】解:(1)把,分別代入得:∴∴拋物線的表達式為:.(2)如圖,過點P作PH⊥OB交BC于點H令x=0,得y=5∴C(0,5),而B(5,0)∴設直線BC的表達式為:∴∴∴設,則∴∴∴∴△BPC面積的最大值為.(3)如圖,∵C(0,5),B(5,0)∴OC=OB,∴∠OBC=∠OCB=45°∴AB=6,BC=要使△BCD與△ABC相似則有或①當時∴則∴D(0,)②當時,CD=AB=6,∴D(0,1)即:D的坐標為(0,1)或(0,)(4)∵∵E為拋物線的頂點,∴E(2,9)如圖,作點E關于y軸的對稱點E'(﹣2,9),∵F(3,a)在拋物線上,∴F(3,8),∴作點F關于x軸的對稱點F'(3,8),則直線E'F'與x軸、y軸的交點即為點M、N設直線E'F'的解析式為:則∴∴直線E'F'的解析式為:∴,0),N(0,).本題為二次函數(shù)綜合運用題,涉及到一次函數(shù)、對稱點性質等知識點,其中(4),利用對稱點性質求解是此類題目的一般解法,需要掌握.22、(1)y-(x-2)2+9,Q(2,9);(2)(2,3);作圖見解析;(3)①不正確,理由見解析;②不能,理由見解析.【分析】(1)將A(-1,0)、B(1,0)分別代入y=-x2+bx+c中即可確定b、c的值,然后配方后即可確定其頂點坐標;(2)連接BC,交對稱軸于點P,連接AP、AC.求得C點的坐標后然后確定直線BC的解析式,最后求得其與x=2與直線BC的交點坐標即為點P的坐標;(3)①設D(t,-t2+4t+1),設折線D-E-O的長度為L,求得L的最大值后與當點D與Q重合時L=9+2=11<相比較即可得到答案;②假設四邊形DCEB為平行四邊形,則可得到EF=DF,CF=BF.然后根據(jù)DE∥y軸求得DF,得到DF>EF,這與EF=DF相矛盾,從而否定是平行四邊形.【詳解】解:(1)將A(-1,0)、B(1,0)分別代入y=-x2+bx+c中,得,解得∴y=-x2+4x+1.∵y=-x2+4x+1=-(x-2)2+9,∴Q(2,9).(2)如圖1,連接BC,交對稱軸于點P,連接AP、AC.∵AC長為定值,∴要使△PAC的周長最小,只需PA+PC最?。唿cA關于對稱軸x=2的對稱點是點B(1,0),拋物線y=-x2+4x+1與y軸交點C的坐標為(0,1).∴由幾何知識可知,PA+PC=PB+PC為最小.設直線BC的解析式為y=kx+1,將B(1,0)代入1k+1=0,得k=-1,∴y=-x+1,∴當x=2時,y=3,∴點P的坐標為(2,3).(3)①這個同學的說法不正確.∵設D(t,-t2+4t+1),設折線D-E-O的長度為L,則L=?t2+4t+1+t=?t2+1t+1=?(t?)2+,∵a<0,∴當t=時,L最大值=.而當點D與Q重合時,L=9+2=11<,∴該該同學的說法不正確.②四邊形DCEB不能為平行四邊形.如圖2,若四邊形DCEB為平行四邊形,則EF=DF,CF=BF.∵DE∥y軸,∴,即OE=BE=2.1.當xF=2.1時,yF=-2.1+1=2.1,即EF=2.1;當xD=2.1時,yD=?(2.1?2)2+9=8.71,即DE=8.71.∴DF=DE-EF=8.71-2.1=6.21>2.1.即DF>EF,這與EF=DF相矛盾,∴四邊形DCEB不能為平行四邊形.本題考查二次函數(shù)及四邊形的綜合,難度較大.23、(1),;(2)或;(3)(12,)或(-12,)【分析】(1)把A點坐標代入中求出k得到反比例函數(shù)解析式,把A點坐標代入中求出b得到一次函數(shù)解析式;(2)由函數(shù)圖象,寫出一次函數(shù)圖象在反比例函數(shù)圖象上方所對應的自變量的范圍即可;(3)設P(x,),先利用一次解析式解析式確定C(0,1),再根據(jù)三角形面積公式得到,然后解絕對值方程得到x的值,從而得到P點坐標.【詳解】解:(1)把A(1,2)代入得k=2,∴反比例函數(shù)解析式為,把A(1,2)代入得,解得,∴一次函數(shù)解析式為;(2)由函數(shù)圖象可得:當y1<y2時,-2<x<0或x>1;(3)設P(x,),當x=0時,,∴C(0,1),∵S△OCP=6,∴,解得,∴P(12,)或(-12,).本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年福建省晉江市建設投資控股集團有限公司及其權屬子公司招聘31人考前自測高頻考點模擬試題附答案詳解(考試直接用)
- 山東省煙臺市2024-2025學年高一下學期期末學業(yè)水平診斷地理試題(解析版)
- 山東省濟南市2024-2025學年高一下學期7月期末地理試題(解析版)
- 本人服務質量承諾書(7篇)
- 2025-2026學年湖南省高三上學期階段性檢測(一)英語試題(解析版)
- 2025春季中國太平校園招聘模擬試卷及完整答案詳解一套
- 2025河北唐山幼兒師范高等??茖W校選聘工作人員35人考前自測高頻考點模擬試題及答案詳解(必刷)
- 餐飲業(yè)菜品成本計算與控制工具
- 行業(yè)領域企業(yè)社會責任承諾書(3篇)
- 2025年河北秦皇島工業(yè)職業(yè)技術學院招聘專任教師3人模擬試卷附答案詳解(典型題)
- 銷售市場每周工作匯報表
- 2023-2024學年山東省泰安市肥城市白云山學校六年級(上)月考數(shù)學試卷(含解析)
- 語法填空-動詞公開課一等獎市賽課獲獎課件
- 中醫(yī)病證診斷療效
- 深靜脈血栓形成的診斷和治療指南第三版
- 春之聲圓舞曲-教學設計教案
- 農(nóng)業(yè)政策學 孔祥智課件 第08章 農(nóng)業(yè)土地政策
- WB/T 1119-2022數(shù)字化倉庫評估規(guī)范
- GB/T 16463-1996廣播節(jié)目聲音質量主觀評價方法和技術指標要求
- GB/T 15972.20-2021光纖試驗方法規(guī)范第20部分:尺寸參數(shù)的測量方法和試驗程序光纖幾何參數(shù)
- 胎兒的發(fā)育課件
評論
0/150
提交評論