廣東省深圳市羅湖區(qū)2024-2025學(xué)年八年級(jí)下學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)試卷_第1頁(yè)
廣東省深圳市羅湖區(qū)2024-2025學(xué)年八年級(jí)下學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)試卷_第2頁(yè)
廣東省深圳市羅湖區(qū)2024-2025學(xué)年八年級(jí)下學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)試卷_第3頁(yè)
廣東省深圳市羅湖區(qū)2024-2025學(xué)年八年級(jí)下學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)試卷_第4頁(yè)
廣東省深圳市羅湖區(qū)2024-2025學(xué)年八年級(jí)下學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)試卷_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省深圳市羅湖區(qū)2024-2025學(xué)年八年級(jí)下學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)試卷

閱卷人

一、選擇題(本大題共8小題,每小題3分,共24分,每小題有四個(gè)選

得分項(xiàng),其中只有一個(gè)是正確的)

1.2025年6月21日是我國(guó)二十四節(jié)氣中的夏至,深圳當(dāng)天最高氣溫是34°C,最低氣溫28°C,則這天

氣溫的變化范圍是()

A.t>28B.t<34C.t=31D.28<t<34

2.教育部門高度重視校園安全教育,要求各級(jí)各類學(xué)校從認(rèn)識(shí)安全警告標(biāo)志入手開展安全教育.下列安

全圖標(biāo)是中心對(duì)稱圖形的是()

A.注意安全A

B.急救中心

C.水深危險(xiǎn)D.禁止攀爬

3.如圖,在MB。。中,乙4=70°,則NO的度數(shù)為()

A.70°B.80°C.110°D.120°

4,下列等式由左邊到右邊的變形,屬于因式分解的是()

A.m2—4=(m+2)(m—2)B.a(x+y)=ax+ay

C.%2-2%+2=(x-l)2+1D.a2-b24-1=(a+b)(a—b)+1

5.不等式2x-3>1的解集在數(shù)軸上表示正確的是()

6.冰裂紋是我國(guó)古典園林的傳統(tǒng)鋪裝紋樣之一,被廣泛應(yīng)用于建筑裝飾和瓷器.如圖2是從圖1冰裂紋

鋪裝的路面圖案中提取的多邊形,則這個(gè)多邊形的內(nèi)角和是()

C.540°D.720°

7.如圖,函數(shù)為=-2*和乃=6+3的圖象相交于點(diǎn)/g,2),則關(guān)于x的不等式—2x>ax+3的解集

是()

A.x>2B.x<2C.x>—1D.x<-1

8.如圖,有兩個(gè)完全重合的團(tuán)ABCD和a4EFG,把回力EFG繞點(diǎn)A按逆時(shí)針方向轉(zhuǎn)動(dòng),使得點(diǎn)E落在

I34BCO的邊CD上,連接BG,4OAB=45°,48=V1U,BC=2,則BG的長(zhǎng)為()

V1OB.V10C.V5D.2V5

閱卷人

二、填空題(本大題共5小題,每小題3分,共15分)

得分

9.因式分解:x2+2x=

10,苯(分子式為C6H6)的環(huán)狀結(jié)構(gòu)是由德國(guó)化學(xué)家凱庫(kù)勒提出的.隨著研究的不斷深入,發(fā)現(xiàn)如圖1

的一個(gè)苯分子中的6個(gè)碳原子形成了正六邊形的結(jié)構(gòu),其示意圖如圖2,點(diǎn)O為正六邊形ABCDEF對(duì)角

線AD的中點(diǎn),連接OC.若OC=1,則CD的長(zhǎng)是

11.人字梯及其側(cè)面如圖所示,AB,AC為支撐架,DE為拉桿,D,E分別是AB,AC的中點(diǎn),若

DE=50cm,則B,C兩點(diǎn)的距離為cm.

12.如果某商品降價(jià)無%后的售價(jià)為a元,那么該商品的原價(jià)為元.

13.如圖1,在△4中,AB=AC,于點(diǎn)D,點(diǎn)P從點(diǎn)B出發(fā),沿BTATD—C的方向勻

速運(yùn)動(dòng)到點(diǎn)C,速度為lcm/s,圖2是點(diǎn)P運(yùn)動(dòng)時(shí),△力。。的面積丫(cm2)隨時(shí)間x(s)變化的圖象,則a

的值為.

閱卷人三、解答題體大題共7小題,第14題8分,第15題7分,第16題8

分,第17題8分,第18題9分,第19題10分,第20題11分,共61

得分分)

(3x-1<5①

14.(1)解不等式組:x.,公<并把不等式組的解集在數(shù)軸上表示出來.

-5-4-3-2-1012345

AD

F

(1)下列條件:①BE=DF;②AFIICE;③乙4E8="FD,請(qǐng)你從中選擇一個(gè)能證明四邊形

AECF是平行四邊形的條件,并寫出證明過程;

(2)若四邊形AECF是平行四邊形,乙AD8=30°,AE1BD,垂足為點(diǎn)E,AD=4;OF=V5,求

胤4EC廠的面積.

18.2025全球人工智能終端展暨第六屆深圳國(guó)際人工智能展覽會(huì)5月在深圳會(huì)展中心啟幕,人工智能

的迅速發(fā)展為物流運(yùn)輸和配送帶來了巨大便利.某快遞公司的倉(cāng)庫(kù)主要使用A,B兩種不同型號(hào)的分揀

機(jī)器人,已知A型機(jī)器人比B型機(jī)器人每小時(shí)多分揀快遞200件,且A型機(jī)器人分揀10000件

快遞所用時(shí)間與R型機(jī)器人分揀9000件所用時(shí)間相等.

(I)A,B型機(jī)器人每小時(shí)各分揀快遞多少件?

(2)“618”期間,快遞公司的業(yè)務(wù)量猛增,每天有25000件快遞要分揀,A,B型機(jī)器人一起

工作5小時(shí)后,B型機(jī)器人有其他業(yè)務(wù)要處理,剩下的快遞由A機(jī)器人分揀,請(qǐng)問A型機(jī)器人還

要工作多少個(gè)小時(shí)才能完成任務(wù)?

19.【綜合與實(shí)踐】

深圳某條東西方向的道路共有五車道,早晚高峰期間經(jīng)常擁堵,數(shù)學(xué)興趣小組的同學(xué)就此問題開展研

究性學(xué)習(xí)活動(dòng).

【信息一】通過實(shí)地考察,興趣小組的同學(xué)對(duì)該路段的交通量(輛/分鐘)和時(shí)間進(jìn)行數(shù)據(jù)的收集統(tǒng)計(jì)

和分析,整理得到下列表格,發(fā)現(xiàn)時(shí)間和交通量的變化規(guī)律符合一次函數(shù)特征,并由此得到力與x的函

數(shù)關(guān)系式及與x的函數(shù)關(guān)系式

時(shí)間X7時(shí)10時(shí)14時(shí)17時(shí)20時(shí)

自西向東交通量

9378a4328

(輛/分鐘)

自東向西交通量為

4248566268

(輛/分鐘)

【信息二】興趣小組的同學(xué)希望根據(jù)兩個(gè)不同方向的擁堵情況來合理設(shè)置中間“可變車道”的方向.通

過查閱資料發(fā)現(xiàn):若單位時(shí)間內(nèi)雙向交通總量設(shè)為□點(diǎn)=為+丫2,當(dāng)車流量較大的方向的交通量y3總

時(shí),道路非常擁堵,需要通過把“可變車道'’的行車方向與交通量較大的方向變?yōu)橄嗤?,去改善交通狀況.

【解決問題】

(1)已知y1與X之間的函數(shù)關(guān)系式為h=-5%+128,表格中Q二;

(2)求曠2與x之間的函數(shù)系式(不寫自變量的取值范圍);

(3)請(qǐng)你通過計(jì)算判斷該路段從7時(shí)至2()時(shí)在比較擁堵時(shí)如何設(shè)置“可變車道”的方向以緩解交通擁

堵?(即在什么時(shí)間段把“可變車道”設(shè)為哪個(gè)方向的車道)

20.【綜合探究】探究小組用兩個(gè)完全相同的等腰直角三角形紙片通過平移做實(shí)驗(yàn).

(1)【操作探究】如圖1,把重合中的△/IBC向左平移成A頂點(diǎn)E恰好是BC邊的中點(diǎn),連接

AF,AB=2后求三角形ACF的面積;

DA

4CE

圖1

(2)【深入探究】如圖2,把繼續(xù)向左平移,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),連接AF交DC于點(diǎn)G,

求證;DG=CG;

DA

圖2

⑶【拓展提升】如圖3,在(2)的條件下,過點(diǎn)D作。于點(diǎn)Q,連CQ,DQ=2,直接寫出CQ

的長(zhǎng)度.

答案解析部分

1.【答案】D

【知識(shí)點(diǎn)】列不等式

【解析】【解答】解:??,最高氣溫是34℃,最低氣溫28%,

???這天氣溫t(°C)的變化范圍是28<t<34

故答案為:D

【分析】根據(jù)“最高氣溫是34°C,最低氣溫28°C”即可列出不等式,進(jìn)而即可求解。

2.【答案】B

【知識(shí)點(diǎn)】中心對(duì)稱及中心對(duì)稱圖形

【解析】【解答】解:A、此圖標(biāo)不是中心對(duì)稱圖形,故A不符合題意;

B、此圖標(biāo)是中心對(duì)稱圖形,故B符合題意;

C、此圖標(biāo)不是中心對(duì)稱圖形,故C不符合題意;

D、此圖標(biāo)不是中心對(duì)稱圖形,故D不符合題意;

故答案為:B

【分析】中心對(duì)稱圖形是圖形線某一點(diǎn)旋轉(zhuǎn)180。后與原來的圖形完全重合,再對(duì)各選項(xiàng)逐一判斷.

3.【答案】C

【知識(shí)點(diǎn)】平行四邊形的性質(zhì);兩直線平行,同旁內(nèi)角互補(bǔ)

【解?析】【解答】解:???四邊形ABCD為平行四邊形,

AAB//BC,

.'NA+ND=180。,

VZA=70°,

/.ZD=110°,

故答案為:C

【分析】根據(jù)平行四邊形的性質(zhì)得到AB〃BC,再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)得到NA+ND=180。,

進(jìn)而結(jié)合NA的度數(shù)即可求解。

4.【答案】A

【知識(shí)點(diǎn)】因式分解的概念

【解析】【解答】解:A、m?-4=(m+2)(m-2)符合因式分解的定義,符合題意,

B、a(x+y)=ax+ay是乘法運(yùn)算,不符合題意,

C、x2-2x+2=(x-1)2+1中等號(hào)右邊不是積的形式,不符合撅意,

D、a2-b2+l=(a+b)(a-b)+1中等號(hào)右邊不是積的形式,不符合題意,

故答案為:A

【分析】根據(jù)因式分解的定義〔把一個(gè)多項(xiàng)式化為幾個(gè)整式的積的形式)結(jié)合題意對(duì)選項(xiàng)逐一判斷即可

求解。

5.【答案】B

【知識(shí)點(diǎn)】解一元一次不等式;在數(shù)軸上表示不等式的解集

【解析】【解答】解:2%-3>1,

移頊合并同類項(xiàng)得:2x>4,

系數(shù)化為1得:%>2,

解集在數(shù)軸上表示,如圖所示:

—J_?__>

012

故選:B.

【分析】首先解不等式,求出解集%22,然后根據(jù)在數(shù)軸上表示解集的規(guī)范要求,大于等于要向右,且

點(diǎn)為實(shí)心的點(diǎn),正確表示解集即可得出答案。

6.【答案】C

【知識(shí)點(diǎn)】多邊形的內(nèi)角和公式

【解析】【解答】解:由題意得這個(gè)多邊形是五邊形,

,其內(nèi)角和為(5-2)xl80°=540°,

故答案為:C

【分析】先讀圖得到這個(gè)多邊形是五邊形,進(jìn)而根據(jù)多邊形的內(nèi)角和公式即可求解。

7.【答案】D

【知識(shí)點(diǎn)】一次函數(shù)與不等式(組)的關(guān)系

【解析】【解答]解:將點(diǎn)2)代入%=-2%得-2m=2,

解得:m=-l,

???點(diǎn)A坐標(biāo)為(-1,2),

不等式-2x>ax+3,

,yi>y2..?.關(guān)于x的不等式一2x>ax+3的解集是x<-l,

故答案為:D.

【分析】根據(jù)題意先求出m二l,再求出點(diǎn)A坐標(biāo)為(-1,2),最后結(jié)合函數(shù)圖象求解即可。

8.【答案】B

【知識(shí)點(diǎn)】.「角形全等及其性質(zhì);勾股定埋;平行四邊形的性質(zhì);旋轉(zhuǎn)的性質(zhì);一.角形全等的判定-AAS

【解析】【解答】解:連接BE,過B作BM_LCD于M,BN_LAE于N,過G作GH_LAE于H,如圖所

由旋轉(zhuǎn)的性質(zhì)可知,AE=AB=y/lQ,AG=AD=2,ZGAE=ZDAB=45°,

AZAEB=ZABE,AH=GH=VL

,/四邊形ABCD為平行四邊形,

???CD〃AB,ZC=ZDAB=45°,BC=AD=2,

AZCEB=ZABE,BM=也

,NBEN=/BEM,

乂?.?BE=BE,

:BENBEM(AAS),

ABN=BM=V2=GH,

又,.,NGQH=NBQN,

?.△QGH^AQBN(AAS),

ABQ=CQ,HQ=NQ,

ABG=2BQ,

VAB=V10>

AAN=VAB2-BN2=2V2,

???HN=AN-AH=VL

???HQ=NQ=多

.,.BQ=VQN2IBN2=

???BG=2BQ=y[lQ.

故答案為:B

【分析】連接BE,過B作BM_LCD于M,BN_LAE于N,過G作GH_LAE于H,先根據(jù)旋轉(zhuǎn)的性質(zhì)得

至|JAE=AB=VTU,AG=AD=2,ZGAE=ZDAB=45°,則NAEB=NABE,AH=GH=/,再根據(jù)

平行四邊形的性質(zhì)得到CD〃AB,ZC=ZDAB=45°,BC=AD=2,則NCEB=NABE,BM=遮,根

據(jù)二角形全等的判定與性質(zhì)(AAS)證明△BENgZXBEM得至IJBN=BM=V?=GH,再證明

△QGH^AQBN(AAS)得到BQ=CQ,HQ=NQ,進(jìn)而根據(jù)勾股定理求出AN,從而即可得到HQ=

NQ=¥,再根據(jù)勾股定埋求出BQ,根據(jù)BG=2BQ即可求解。

9.【答案】x(x+2)

【知識(shí)點(diǎn)】因式分解-提公因式法

【解析】【解答】解:原式=x(x+2),

故答案為:x(x+2).

【分析】直接利用提公因式法分解即可。

10.【答案】1

【知識(shí)點(diǎn)】等邊三角形的判定與性質(zhì);正多邊形的性質(zhì)

【解析】【解答】解:..?點(diǎn)O為正六邊形ABCDEF對(duì)角線AD的中點(diǎn),

???點(diǎn)O是正六邊形ABCDEF的中心,

AOD=OC,ZDOC=1x360°=60°,

o

DOC是等邊二角形.

ACD=OC=1,

故答案為:1

【分析】先根據(jù)正多邊形的性質(zhì)結(jié)合題意得到點(diǎn)O是正六邊形ABCDEF的中心,則OD=OC,ZDOC=

lx360°=60°,再根據(jù)等邊三角形的判定與性質(zhì)即可求解。

O

11.【答案】100

【知識(shí)點(diǎn)】三角形的中位線定理

【辭析】【解答】解:由題意得AB=AC,

VD,E分別是AB,AC的中點(diǎn),DE=50cm,

.'DE是△ABC的中位線,

.,.BC=2DE=100cm,

故答案為:100

【分析】根據(jù)題意得到AB=AC,再根據(jù)中點(diǎn)結(jié)合三角形中位線定理得到BC=2DE,代入數(shù)值即可求解。

12,【答案】4

【知識(shí)點(diǎn)】用代數(shù)式表示實(shí)際問座中的數(shù)最關(guān)系

【解析】【解答】解:由題意得售價(jià)(a)=原價(jià)x(l—x%),

**?原價(jià)=吾%兀

a

故答案為:

1-x%

【分析】先根據(jù)題意得到包價(jià)匕)二原價(jià)x(l-x%),進(jìn)而即可得到原價(jià)二舌%元.

13.【答案】24

【知識(shí)點(diǎn)】三角形的面積;勾股定理;通過函數(shù)圖象獲取信息

【解析】【解答】解:由點(diǎn)P的運(yùn)動(dòng)可知,AB=10cm,AD=18-10=8(cm),

在RsABD中,

由勾股定理得BD=6cm,

1

3=SAABD=yX6X8=24(cm2).

故答案為:24

【分析】先根據(jù)點(diǎn)P的運(yùn)動(dòng)結(jié)合函數(shù)圖象得到AB和AD,進(jìn)而根據(jù)勾股定理即可得到BF,從而根據(jù)三

角形的面積公式即可求解。

14.【答案】(1)解:解不等式①,得工42

解不等式②,得、>一2

在同一條數(shù)軸上表示不等式①②的解集,如圖

-?-----1------1(>I1I1-----1-----1----1—>

-5-4-3-2-1012345

原不等式組的解集為:一2<%W2

(2)解:把方程化為與=--、一2

X—LX-L

方程兩邊同時(shí)乘以。-2),得

1—%=—1-2(x-2)

l-x=-1-2%+4

—x+2x=-1—14-4

x=2

經(jīng)檢驗(yàn),%=2是原方程的增根,原方程無解.

【知識(shí)點(diǎn)】在數(shù)軸上表示不等式組的解集:解一元一次不等式紐;去分母法解分式方程

【解析】【分析】(1)先根據(jù)題意分別解不等式①和②,進(jìn)而將不等式的解表示在數(shù)軸上即可得到不等

式組的解集;

(2)根據(jù)題意將方程兩邊同時(shí)乘(x-2),進(jìn)而化簡(jiǎn),再去括號(hào),移項(xiàng),合并同類項(xiàng),從而得到x,再檢

驗(yàn)即可。

15.【答案】(1)A,D

(2)解:①選擇小穎解法

侑#_rx-2x+2x^—4

-l(x+2)(x-2)+(x+2)(x-2)1l*

_2x(x+2)(x—2)

=(x+2)(x-2)

=—2

X

當(dāng)x=i時(shí),原式q=2

②選擇小紅解法

I百甫1x2~411%2—4

原式—+^2'—

1(%+2)(%-2)](%+2)(%-2)

%+2%2+%—2%2

x-2x+2

%2+x2

2x

F

2

=x

當(dāng)x=l時(shí),原式彳=2

【知識(shí)點(diǎn)】分式有無意義的條件;分式的基本性質(zhì);分式的化簡(jiǎn)求值-擇值代入

【解.析】【分析】3)根據(jù)分式的基本性質(zhì)結(jié)合乘法分配律即可求解;

(2)根據(jù)分式的化簡(jiǎn)結(jié)合題意選擇其中一種解法化簡(jiǎn),進(jìn)而根據(jù)分式有意義的條件代入數(shù)值即可求解。

16.【答案】解:⑴△&B1G就是所求作的圖形;

⑵A4282c2就是所求作的圖形;

⑶點(diǎn)P就是所求作的點(diǎn).

【知識(shí)點(diǎn)】點(diǎn)的坐標(biāo);軸對(duì)稱的應(yīng)用?最短距離問題;作圖-平移;作圖-中心對(duì)稱

【解析】【分析】(1)根據(jù)作圖-平移畫出點(diǎn)A、點(diǎn)B和點(diǎn)C平移后的坐標(biāo),進(jìn)而依次連接即可求解;

(2)先根據(jù)中心對(duì)稱標(biāo)出點(diǎn)A、點(diǎn)B和點(diǎn)C分別中心對(duì)稱后的坐標(biāo),進(jìn)而即可求解;

(3)根據(jù)軸對(duì)稱-最短距離問題先作A點(diǎn)的對(duì)稱點(diǎn)A,,進(jìn)而連接AB,從而交y軸于點(diǎn)P,即為所求。

17.【答案】(1)解:我選擇①

證明:在△48C0中,AO=CO,BO=DO

BE=DF

???EO=FO

四邊形AECF是平行四邊形;

我選擇②

證明:在aABCD中,AO=CO

vAF||CE

:.Z-AFO=Z-CBO

在△49。和^CB。中,

(AO=CO

\/-AFO=LCBO

V^AOF=乙COE

.%△AFO=△CBO(AAS)

???AF=CE

XvAF||CE

四邊形AECF是平行四邊形;

我選擇③

證明:在口ABCD中,AO=CO

*:LAEB=乙CFD

:.LAEO=乙CFO

:.AE||CF

在"0中,

AO=CO

Z.AEO=乙CFO

^AOE=乙COF

A△AEONSCFO(AAS)

:.AE=CF

又「AE||CF

.??四邊形AECF是平行四邊形.

(2)解:-AE1.BD,

^AED=90°

^.Rt△AED中,/LADB=30°,

??.AE=*AO=gx4=2,

DE=y]AD2-AB2=V42+22=2百,

,:EF=DE-DE=2V3-V3=V3

?SISABCF=4E-EF

=2xV3

=2V3

【知識(shí)點(diǎn)】平行線的判定與性質(zhì);含30。角的直角三角形;勾股定理;平行四邊形的判定與性質(zhì);三角形全等的

判定-AAS

【解析】【分析】(1)選擇①,先根據(jù)平行四邊形的性質(zhì)得到4。=。。,BO=DO,再進(jìn)行線段的運(yùn)算得

到EO=F。,從而根據(jù)平行四邊形的判定即可求解;選擇②,先根據(jù)平行四邊形的性質(zhì)得到4。=C。,

再根據(jù)平行線的性質(zhì)得到44FO=4CBO,進(jìn)而根據(jù)三角形全等的判定與性質(zhì)(AAS)證明△4F0WA

CBOG44S)得到AF=CE,從而結(jié)合平行四邊形的判定即可求解;選擇③根據(jù)平行四邊形的性質(zhì)得到

AO=C。,再等量代換得到乙4E0=4CF。,進(jìn)而根據(jù)平行線的判定證明AEIICF,從而根據(jù)三角形全等

的判定與性質(zhì)證明△AEO=△"0(44S)得至必E=CF,最后根據(jù)平行四邊形的判定即可求解;

(2)先根據(jù)垂直得到乙4EO=90°,再根據(jù)含30。角的直角三角形的性質(zhì)得到AE,根據(jù)勾股定理求出

DE,從而即可求出EF,再根據(jù)平行四邊形的面積公式即可求解。

18.【答案】(1)解:設(shè)B型機(jī)器人每小時(shí)分揀x件,則A型機(jī)器人每小時(shí)分揀(x+2)件,

根據(jù)題意得,10000_9000

x+200——T~

解得x=1800,

經(jīng)檢驗(yàn)x=1800是原方程的解

x+200=1800+200=2000(件)

答:A型機(jī)器人每小時(shí)分揀2000件快遞,B型機(jī)器人每小時(shí)分揀1800件快遞.

(2)解:25000-(2000+1800)x5=6000(件)

60D(H2(XX)=3(小時(shí))

答:A型機(jī)器人還要工作3小時(shí).

【知識(shí)點(diǎn)】分式方程的實(shí)際應(yīng)用

【蟀析】【分析】(1)設(shè)B型機(jī)器人每小時(shí)分揀x件,則A幽機(jī)器人每小時(shí)分揀(x+2)件,根據(jù)“A型機(jī)器

人分揀1000()件快遞所用時(shí)間與B型機(jī)器人分揀9000件所用時(shí)間相等''即可列出分式方程,進(jìn)而解方

程,檢驗(yàn)即可求解;

(2)根據(jù)“每天有25000件快遞要分揀,A,B型機(jī)器人一起工作5小時(shí)后,B型機(jī)器人有其他業(yè)

務(wù)要處理,剩下的快遞由A機(jī)器人分揀''列式求出A型機(jī)器人需要分揀的快遞數(shù),進(jìn)而即可求出其分

揀時(shí)間。

19.【答案】(1)58

(2)解:設(shè)為=kx+b

將;c=7,y2=42和%=10,y2=48代入為=kx+b

彳埠f42=7A:+b

例〔48=10k+b

解得,(b=28

???y2=2x+28

(3)解:v=yj+y2=-5%+128+2%4-28=-3%+156

①當(dāng)為總時(shí),即-5x+128之家—3%+156)

解得,x<8

②當(dāng)為之gu總時(shí)、即2%+28>|(-3x+156)

解得,x>19

二7時(shí)到8時(shí),可變車道方向設(shè)為白西向東;

19時(shí)到20時(shí),可變車道方向設(shè)為自東向西.

【知識(shí)點(diǎn)】一元一次不等式的應(yīng)用;待定系數(shù)法求一次函數(shù)解析式;一次函數(shù)與不等式(組)的關(guān)系;一次函

數(shù)的實(shí)際應(yīng)用

【解析】【解答]解:(1)當(dāng)x=14時(shí),。=?5x14+128=58,

故答案為:58

【分析】(1)根據(jù)題意將x的值代入一次函數(shù)解析式,進(jìn)而即可求解;

(2)根據(jù)題意運(yùn)用待定系數(shù)法即可得到y(tǒng)2與x的函數(shù)關(guān)系式;

(3)根據(jù)題意得到〃總=、1+),2=-5%+128+2久+28=-3%+156,進(jìn)而分類討論:①當(dāng)為之,〃總

時(shí),②當(dāng)總時(shí),分別求出x的取值即可。

20.【答案】(1)解:在等腰RCA4BC中,AB=BC,AB1BC

平移得至I"DEF

BC=EF

???E是BC的中點(diǎn)

1

.?.BE=CE=CF=yAB

111

???CF=yX2v5=v5

1

???SAACF=)CF.AB

111

=2xVsx2V5

=5

(2)證明:ABC=△DEFAC=DFy.

???△ABC平移得至DEF

???AC||DF

乙DFG=Z.CGA.AFDG=LACG

在△DFG^/s.(L4G中,

(^DFG=LCGA

DF=AC

{^FDG=Z.ACG

:.△DFG=△CAG(ASA)

???DG=CG

(3)解:CQ=2A/2

【知識(shí)點(diǎn)】三角形全等的判定;平移的性質(zhì);等腰直角三角形;直角三角形斜邊上的中線

【解析】【解答]解:(3)過C作CH_LFQ于H,CM_LCQ交FQ于M,如圖所示:

圖3

/.ZMCQ-ZFCD-900,/.ZFCM-ZDCQ,VDQXAF,/.ZDQG-ZFCG-90%VZDGQ-

ZCGF,??.NCFM=Q,ACFM^ACDQ(ASA),/.CM=CQ,AZCQH=45°,VZCHG=ZDQG=

90〉,VZDGQ=ZCGH,DG=CG,.*.△DQG^ACHG(AAS),,CH=DQ=2,ACQ=V2CH=272

【分析】(1)先根據(jù)等腰直角三角形的性質(zhì)得到48=BC,ABLBC,進(jìn)而根據(jù)平移的性質(zhì)得到3C=

EF,再根據(jù)直角三角形斜邊上的中線的性質(zhì)結(jié)合題意得到BE=CE=C"=24B,從而即可得到CF,再

根據(jù)三角形的面積即可求解;

(2)先根據(jù)平移的性質(zhì)結(jié)合三角形全等的性質(zhì)得到4C=DF,AC\\DF,進(jìn)而根據(jù)平行線的性質(zhì)得到

乙DFG=乙CGA/FDG=乙4CG,再根據(jù)三角形全等的判定與性質(zhì)證明公DFG-△a4G(4SA)即可得至I」

DC=CG;

(3)過C作CH_LFQ于H,CM_LCQ交FQ于M,根據(jù)題意等量代換結(jié)合垂直得到NCFM=Q,進(jìn)而

根據(jù)三角形全等的判定與性質(zhì)證明CFM04CDQ(ASA)得到CM=CQ,從而等量代換得到NCHG=

ZDQG=90°,再證明△DQGZ^CHG(AAS)得到CH=DQ=2,根據(jù)等腰直角三角形的性質(zhì)即可求

解。

試題分析部分

1、試卷總體分布分析

總分:100分

客觀題(占比)33.0(33.0%)

分值分布

主觀題(占比)67.0(67.0%)

客觀題(占比)11(55.0%)

題量分布

主觀題(占比)9(45.0%)

2、試卷題量分布分析

大題題型題目量(占比)分值(占比)

解答題(本大題共7

小題,第14題8

分,第15題7分,

第16題8分,第

7(35.0%)61.0(61.0%)

17題8分,第18題

9分,第19題10

分,第20題11

分,共61分)

選擇題(本大想共8

小題,每小題3分,

共24分,每小題有8(40.0%)24.0(24.0%)

四個(gè)選項(xiàng),其中只有

一個(gè)是正確的)

填空題(本大題共5

小題,每小題3分,5(25.0%)15.0(15.0%)

共15分)

3、試卷難度結(jié)構(gòu)分析

序號(hào)難易度占比

1普通(45.0%)

2容易(45.0%)

3困難(10.0%)

4、試卷知識(shí)點(diǎn)分析

序號(hào)知識(shí)點(diǎn)(認(rèn)知水平)分值(占比)對(duì)應(yīng)題號(hào)

1因式分解的概念3.0(3.0%)4

2去分母法解分式方程8.0(8.0%)14

3三角形全等的判定11.0(11.0%)20

4含30°角的直角三角形8.0(8.0%)17

5三角形的中位線定理3.0(3.0%)11

6因式分解?提公因式法3.0(3.0%)9

7解一元一次不等式組8.0(8.0%)14

8軸對(duì)稱的應(yīng)用-最短距離問題8.。(8.0%)16

9作圖-平移8.0(8.0%)16

10平行線的判定。性質(zhì)8.0(8.0%)17

11平移的性質(zhì)11.0(11.0%)20

12兩直線平行,同旁內(nèi)帶互補(bǔ)3.0(3.0%)3

用代數(shù)式表示實(shí)際問題中的數(shù)量關(guān)

133.0(3.0%)12

14在數(shù)軸上表示不等式組的解集8.0(8.0%)14

15等腰直角三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論