江蘇省宜興市桃溪中學(xué)2026屆數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
江蘇省宜興市桃溪中學(xué)2026屆數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
江蘇省宜興市桃溪中學(xué)2026屆數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
江蘇省宜興市桃溪中學(xué)2026屆數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
江蘇省宜興市桃溪中學(xué)2026屆數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省宜興市桃溪中學(xué)2026屆數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列說法不正確的是()A.一組鄰邊相等的矩形是正方形B.對角線互相垂直的矩形是正方形C.對角線相等的菱形是正方形D.有一組鄰邊相等、一個角是直角的四邊形是正方形2.將拋物線向上平移2個單位長度,再向右平移3個單位長度后,得到的拋物線解析式為()A. B.C. D.3.如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,則tanA的值為()A. B. C. D.4.如圖,在平面直角坐標(biāo)系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應(yīng)點A′的坐標(biāo)是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)5.在Rt△ABC中,∠C=90°,AB=5,BC=3,則tanA的值是()A. B. C. D.6.已知(a≠0,b≠0),下列變形錯誤的是()A. B.2a=3b C. D.3a=2b7.將拋物線y=2xA.y=2(x-2)2-3 B.y=2(x-2)28.圓錐的底面半徑是5cm,側(cè)面展開圖的圓心角是180°,圓錐的高是()A.5cm B.10cm C.6cm D.5cm9.在矩形中,的角平分線與交于點,的角平分線與交于點,若,,則的長為()A. B. C. D.10.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等邊三角形 B.平行四邊形 C.正五邊形 D.圓11.如圖,在平面直角坐標(biāo)系中,過格點A,B,C畫圓弧,則點B與下列格點連線所得的直線中,能夠與該圓弧相切的格點坐標(biāo)是()A.(5,2) B.(2,4) C.(1,4) D.(6,2)12.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結(jié)論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正確結(jié)論的個數(shù)是()A.4個 B.3個 C.2個 D.1個二、填空題(每題4分,共24分)13.已知拋物線,當(dāng)時,的取值范圍是______________14.若⊙P的半徑為5,圓心P的坐標(biāo)為(﹣3,4),則平面直角坐標(biāo)系的原點O與⊙P的位置關(guān)系是_____.15.一個幾何體是由一些大小相同的小正方塊擺成的,其俯視圖與主視圖如圖所示,則組成這個幾何體的小正方塊最多有________.16.如圖,中,ACB=90°,AC=4,BC=3,則_______.17.菱形的兩條對角線長分別是6和8,則菱形的邊長為_____.18.如圖,△ABC繞點B逆時針方向旋轉(zhuǎn)到△EBD的位置,∠A=20°,∠C=15°,E、B、C在同一直線上,則旋轉(zhuǎn)角度是_______.三、解答題(共78分)19.(8分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸,y軸分別相交于A,B兩點,且與反比例函數(shù)y=交于點C,D.作CE⊥x軸,垂足為E,CF⊥y軸,垂足為F.點B為OF的中點,四邊形OECF的面積為16,點D的坐標(biāo)為(4,﹣b).(1)求一次函數(shù)表達(dá)式和反比例函數(shù)表達(dá)式;(2)求出點C坐標(biāo),并根據(jù)圖象直接寫出不等式kx+b≤的解集.20.(8分)(1)計算:(2)若關(guān)于的方程有兩個相等的實數(shù)根,求的值.21.(8分)如圖1,BC是⊙O的直徑,點A在⊙O上,AD⊥BC,垂足為D,,BE分別交AD、AC于點F、G.(1)判斷△FAG的形狀,并說明理由;(2)如圖2,若點E和點A在BC的兩側(cè),BE、AC的延長線交于點G,AD的延長線交BE于點F,其余條件不變,(1)中的結(jié)論還成立嗎?請說明理由;(3)在(2)的條件下,若BG=26,BD﹣DF=7,求AB的長.22.(10分)如圖,在△ABC中,AB=BC,D是AC中點,BE平分∠ABD交AC于點E,點O是AB上一點,⊙O過B、E兩點,交BD于點G,交AB于點F.(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;(2)當(dāng)BD=6,AB=10時,求⊙O的半徑.23.(10分)已知關(guān)于x的一元二次方程.(1)當(dāng)m為何值時,方程有兩個不相等的實數(shù)根?(2)設(shè)方程兩根分別為、,且2、2分別是邊長為5的菱形的兩條對角線,求m的值.24.(10分)如圖,,平分,且交于點,平分,且交于點,與相交于點,連接求的度數(shù);求證:四邊形是菱形.25.(12分)己知函數(shù)(是常數(shù))(1)當(dāng)時,該函數(shù)圖像與直線有幾個公共點?請說明理由;(2)若函數(shù)圖像與軸只有一公共點,求的值.26.甲、乙兩名同學(xué)玩一個游戲:在一個不透明的口袋中裝有標(biāo)號分別為1,2,3,4的四個小球(除標(biāo)號外無其它差異).從口袋中隨機(jī)摸出一個小球,記下標(biāo)號后放回口袋中,充分搖勻后,再從口袋中隨機(jī)摸出一個小球,記下該小球的標(biāo)號,兩次記下的標(biāo)號分別用x、y表示.若為奇數(shù),則甲獲勝;若為偶數(shù),則乙獲勝.請你運用所學(xué)的概率的相關(guān)知識通過計算說明這個游戲?qū)?、乙雙方是否公平.

參考答案一、選擇題(每題4分,共48分)1、D【分析】利用正方形的判定方法分別判斷得出即可.【詳解】A、一組鄰邊相等的矩形是正方形,說法正確,不合題意;B、對角線互相垂直的矩形是正方形,說法正確,不合題意;C、對角線相等的菱形是正方形,說法正確,不合題意;D、有一組鄰邊相等、一個角是直角的平行四邊形是正方形,原說法錯誤,符合題意;故選:D.本題考查了正方形的判定問題,掌握正方形的性質(zhì)以及判定定理是解題的關(guān)鍵.2、B【分析】根據(jù)“左加右減、上加下減”的原則進(jìn)行解答即可.【詳解】將化為頂點式,得.將拋物線向上平移2個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為,故選B.本題考查的是二次函數(shù)的圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.3、D【分析】由三角函數(shù)定義即可得出答案.【詳解】如圖所示:由圖可得:AD=3,CD=4,∴tanA.故選:D.本題考查了解直角三角形.構(gòu)造直角三角形是解答本題的關(guān)鍵.4、D【詳解】試題分析:方法一:∵△ABO和△A′B′O關(guān)于原點位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵點A(―3,6)且相似比為,∴點A的對應(yīng)點A′的坐標(biāo)是(―3×,6×),∴A′(-1,2).∵點A′′和點A′(-1,2)關(guān)于原點O對稱,∴A′′(1,―2).故答案選D.考點:位似變換.5、A【解析】由勾股定理,得AC=,由正切函數(shù)的定義,得tanA=,故選A.6、B【分析】根據(jù)兩內(nèi)項之積等于兩外項之積對各選項分析判斷即可得解.【詳解】解:由得,3a=2b,A、由等式性質(zhì)可得:3a=2b,正確;B、由等式性質(zhì)可得2a=3b,錯誤;C、由等式性質(zhì)可得:3a=2b,正確;D、由等式性質(zhì)可得:3a=2b,正確;故選B.本題考查了比例的性質(zhì),主要利用了兩內(nèi)項之積等于兩外項之積.7、B【解析】根據(jù)“左加右減,上加下減”的規(guī)律求解即可.【詳解】y=2x2向右平移2個單位得y=2(x﹣2)2,再向上平移3個單位得y=2(x﹣2)2+3.故選B.本題考查了二次函數(shù)圖象的平移,其規(guī)律是是:將二次函數(shù)解析式轉(zhuǎn)化成頂點式y(tǒng)=a(x-h)2+k

(a,b,c為常數(shù),a≠0),確定其頂點坐標(biāo)(h,k),在原有函數(shù)的基礎(chǔ)上“h值正右移,負(fù)左移;k值正上移,負(fù)下移”.8、A【解析】設(shè)圓錐的母線長為R,根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和弧長公式得到2π?5=,然后解方程即可母線長,然后利用勾股定理求得圓錐的高即可.【詳解】設(shè)圓錐的母線長為R,根據(jù)題意得2π?5,解得R=1.即圓錐的母線長為1cm,∴圓錐的高為:5cm.故選:A.本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.9、D【分析】先延長EF和BC,交于點G,再根據(jù)條件可以判斷三角形ABE為等腰直角三角形,并求得其斜邊BE的長,然后根據(jù)條件判斷三角形BEG為等腰三角形,最后根據(jù)△EFD∽△GFC得出CG與DE的倍數(shù)關(guān)系,并根據(jù)BG=BC+CG進(jìn)行計算即可.【詳解】延長EF和BC,交于點G,∵3DF=4FC,∴,∵矩形ABCD中,∠ABC的角平分線BE與AD交于點E,∴∠ABE=∠AEB=45°,∴AB=AE=7,∴直角三角形ABE中,BE=,又∵∠BED的角平分線EF與DC交于點F,∴∠BEG=∠DEF,∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC,∴,設(shè)CG=3x,DE=4x,則AD=7+4x=BC,∵BG=BC+CG,∴7+4x+3x=7,解得x=?1,∴BC=7+4x=7+4?4=3+4,故選:D.本題主要考查了矩形、相似三角形以及等腰三角形,解決問題的關(guān)鍵是掌握矩形的性質(zhì):矩形的四個角都是直角,矩形的對邊相等.解題時注意:有兩個角對應(yīng)相等的兩個三角形相似.10、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.如果一個圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.【詳解】解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故A錯誤;B、平行四邊形不是軸對稱圖形,是中心對稱圖形,故B錯誤;C、正五邊形是軸對稱圖形,不是中心對稱圖形,故C錯誤;D、圓是軸對稱圖形,也是中心對稱圖形,故D正確.故選:D.此題主要考查了中心對稱圖形與軸對稱的定義,根據(jù)定義得出圖形形狀是解決問題的關(guān)鍵.11、D【分析】根據(jù)切線的判定在網(wǎng)格中作圖即可得結(jié)論.【詳解】解:如圖,過格點A,B,C畫圓弧,則點B與下列格點連線所得的直線中,能夠與該圓弧相切的格點坐標(biāo)是(6,2).故選:D.本題考查了切線的判定,掌握切線的判定定理是解題的關(guān)鍵.12、B【詳解】解:∵拋物線和x軸有兩個交點,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正確;∵對稱軸是直線x﹣1,和x軸的一個交點在點(0,0)和點(1,0)之間,∴拋物線和x軸的另一個交點在(﹣3,0)和(﹣2,0)之間,∴把(﹣2,0)代入拋物線得:y=4a﹣2b+c>0,∴4a+c>2b,∴②錯誤;∵把(1,0)代入拋物線得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正確;∵拋物線的對稱軸是直線x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正確;即正確的有3個,故選B.考點:二次函數(shù)圖象與系數(shù)的關(guān)系二、填空題(每題4分,共24分)13、1≤y<9【分析】根據(jù)二次函數(shù)的圖象和性質(zhì)求出拋物線在上的最大值和最小值即可.【詳解】∴拋物線開口向上∴當(dāng)時,y有最小值,最小值為1當(dāng)時,y有最大值,最小值為∴當(dāng)時,的取值范圍是故答案為:.本題主要考查二次函數(shù)在一定范圍內(nèi)的最大值和最小值,掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.14、點O在⊙P上【分析】由勾股定理等性質(zhì)算出點與圓心的距離d,則d>r時,點在圓外;當(dāng)d=r時,點在圓上;當(dāng)d<r時,點在圓內(nèi).【詳解】解:由勾股定理,得OP==5,d=r=5,故點O在⊙P上.故答案為點O在⊙P上.此題考查點與圓的位置關(guān)系的判斷.解題關(guān)鍵在于要記住若半徑為r,點到圓心的距離為d,則有:當(dāng)d>r時,點在圓外;當(dāng)d=r時,點在圓上,當(dāng)d<r時,點在圓內(nèi).15、6【解析】符合條件的最多情況為:即最多為2+2+2=616、【分析】先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tan∠A=.故答案為.本題考查了解直角三角形,三角函數(shù)值只與角的大小有關(guān),因而求一個角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.17、1【分析】根據(jù)菱形對角線垂直平分,再利用勾股定理即可求解.【詳解】解:因為菱形的對角線互相垂直平分,根據(jù)勾股定理可得菱形的邊長為=1.故答案為1.此題主要考查菱形的邊長求解,解題的關(guān)鍵是熟知菱形的性質(zhì)及勾股定理的運用.18、35°【分析】根據(jù)旋轉(zhuǎn)角度的概念可得∠ABE為旋轉(zhuǎn)角度,然后根據(jù)三角形外角的性質(zhì)可進(jìn)行求解.【詳解】解:由題意得:∠ABE為旋轉(zhuǎn)角度,∵∠A=20°,∠C=15°,E、B、C在同一直線上,∴∠ABE=∠A+∠C=35°;故答案為35°.本題主要考查旋轉(zhuǎn)及三角形外角的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì)是解題的關(guān)鍵.三、解答題(共78分)19、(1)y=﹣2x+1;(2)﹣2≤x<0或x≥1.【分析】(1)由矩形的面積求得m=﹣16,得到反比例函數(shù)的解析式,把D(1,﹣b)代入求得的解析式得到D(1,﹣1),求得b=1,把D(1,﹣1)代入y=kx+1,即可求得一次函數(shù)的解析式;(2)由一次函數(shù)的解析式求得B的坐標(biāo)為(0,1),根據(jù)題意OF=8,C點的縱坐標(biāo)為8,代入反比例函數(shù)的解析式求得橫坐標(biāo),得到C的坐標(biāo),根據(jù)C、D的坐標(biāo)結(jié)合圖象即可求得不等式kx+b≤的解集.【詳解】解:(1)∵CE⊥x軸,CF⊥y軸,∵四邊形OECF的面積為16,∴|m|=16,∵雙曲線位于二、四象限,∴m=﹣16,∴反比例函數(shù)表達(dá)式為y=,將x=1代入y=得:y=﹣1,∴D(1,﹣1),∴b=1將D(1,﹣1)代入y=kx+1,得k=﹣2∴一次函數(shù)的表達(dá)式為y=﹣2x+1;(2)∵y=﹣2x+1,∴B(0,1),∴OF=8,將y=8代入y=﹣2x+1得x=﹣2,∴C(﹣2,8),∴不等式kx+b≤的解集為﹣2≤x<0或x≥1.本題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,用到的知識點是待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式,這里體現(xiàn)了數(shù)形結(jié)合的思想,關(guān)鍵是根據(jù)反比例函數(shù)與一次函數(shù)的交點求出不等式的解集.20、(1)6;(2).【分析】(1)根據(jù)負(fù)指數(shù)冪和0次冪法則,特殊三角函數(shù)值分別算出原算式中的每一項,然后進(jìn)行實數(shù)運算即可.(2)根據(jù)一元二次方程根的判別式與根個數(shù)的關(guān)系,可得出b2-4ac=0,列方程求解.【詳解】解:(1);(2)∵有兩個相等的實數(shù)根,∴b2-4ac=22-4(2m-1)=0,∴m=1.本題考查實數(shù)運算和一元二次方程根的判別式與根個數(shù)的關(guān)系,掌握負(fù)指數(shù)冪,0次冪和特殊三角形函數(shù)值及根的判別式是解答此題的關(guān)鍵.21、(1)等腰三角形,理由見解析;(2)成立,理由見解析;(3).【分析】(1)首先根據(jù)圓周角定理及垂直的定義得到,,從而得到,然后利用等弧對等角、等角對等邊等知識得到,從而證得,判定等腰三角形;(2)成立,證明方法同(1);(3)首先根據(jù)上題得到,從而利用已知條件得到,然后利用勾股定理得到,,從而求得,最后求得【詳解】解:(1)結(jié)論:△FAG是等腰三角形;理由:如圖1,為直徑,,,,,,,,,,,,,是等腰三角形;(2)(1)中的結(jié)論成立;為直徑,,,,,,,,,,,,,是等腰三角形;(3)由(2)得:,,,解得:,,,.此題是圓的綜合題,主要考查了圓周角定理,垂徑定理、勾股定理,等腰三角形的判定和性質(zhì),解本題的關(guān)鍵是判斷出是等腰三角形,是一道難度不大的三角形和圓的結(jié)合的題目.22、(1)(1)AC與⊙O相切,證明見解析;(2)⊙O半徑是.【解析】試題分析:(1)連結(jié)OE,如圖,由BE平分∠ABD得到∠OBE=∠DBO,加上∠OBE=∠OEB,則∠OBE=∠DBO,于是可判斷OE∥BD,再利用等腰三角形的性質(zhì)得到BD⊥AC,所以O(shè)E⊥AC,于是根據(jù)切線的判定定理可得AC與⊙O相切;(2)設(shè)⊙O半徑為r,則AO=10﹣r,證明△AOE∽△ABD,利用相似比得到,然后解方程求出r即可.試題解析:(1)AC與⊙O相切.理由如下:連結(jié)OE,如圖,∵BE平分∠ABD,∴∠OBE=∠DBO,∵OE=OB,∴∠OBE=∠OEB,∴∠OBE=∠DBO,∴OE∥BD,∵AB=BC,D是AC中點,∴BD⊥AC,∴OE⊥AC,∴AC與⊙O相切;(2)設(shè)⊙O半徑為r,則AO=10﹣r,由(1)知,OE∥BD,∴△AOE∽△ABD,∴,即,∴r=,即⊙O半徑是.考點:圓切線的判定:相似經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.解決(2)小題的關(guān)鍵是利用相似比構(gòu)建方程.23、(1);(2)【分析】(1)由根的判別式即可求解;(2)根據(jù)菱形對角線互相垂直且平分,由勾股定理得,又由一元二次方程根與系數(shù)的關(guān)系,所以有,據(jù)此列出關(guān)于m的方程求解.【詳解】(1)∵方程有兩個不相等的實數(shù)根,∴解得:∴當(dāng)時,方程有兩個不相等的實數(shù)根;(2)由題意得:∴解得:或∵2、2分別是邊長為5的菱形的兩條對角線∴,即∴本題考查一元二次方程根的判別式、結(jié)合菱形的性質(zhì)考查勾股定理和韋達(dá)定理,熟知一元二次方程根與系數(shù)的關(guān)系是解題關(guān)鍵.24、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論