




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
STATEOF
REPORT
2025
TheStateof
Self-Service
andAutomation
ByFernHalper,Ph.D.
TDWIVPofResearch
Sponsoredby:
precisely
dwv
StateofSelf-ServiceandAutomation
ByFernHalper,Ph.D.
TableofContents
TheScopeandImportanceofSelf-Service 2
TheOverallStateofSelf-ServiceMaturity 4
TheStateofOrganizationalCultureforSelf-Service 5
TheStateofDataMaturityforSelf-Service 7
TheStateofDataInfrastructureMaturityforSelf-Service 8
TheStateofSelf-ServiceEnablement 11
BuildingDataLiteracy 13
TheStateofGovernanceforSelf-Service 13
ConsiderationsandBestPracticesforIncreasing
Self-ServiceMaturity 14
ResearchMethodology 17
FromOurSponsor 18
AbouttheAuthor 19
AboutTDWIResearch 19
?2025byTDWI,adivisionof1105Media,Inc.Allrightsreserved.Reproductionsinwholeorpartare
prohibitedexceptbywrittenpermission.Emailrequestsorfeedbackto
info@
.Productandcompanynamesmentionedhereinmaybetrademarksand/orregisteredtrademarksoftheirrespectivecompanies.
Inclusionofavendor,product,orserviceinTDWIresearchdoesnotconstituteanendorsementbyTDWIoritsmanagement.Sponsorshipofapublicationshouldnotbeconstruedasanendorsementofthesponsor
organizationorvalidationofitsclaims.ThisreportisbasedonindependentresearchandrepresentsTDWI’sfindings;readerexperiencemaydiffer.Theinformationcontainedinthisreportwasobtainedfromsourcesbelievedtobereliableatthetimeofpublication.Featuresandspecificationscananddochangefrequently;readersareencouragedtovisitvendorwebsitesforupdatedinformation.TDWIshallnotbeliableforany
omissionsorerrorsintheinformationinthisreport.
1
StateofSelf-ServiceandAutomation2
TheScopeandImportanceofSelf-Service
Whenself-servicefirstgainedtraction,
thefocuswaslargelyonanalytics,giving
businessuserseasieraccesstodataand
visualizationtools.Today,self-service
extendsacrosstheentiredataandanalyticslifecycle.Automationiscentraltothis
shift,withlow-codeandno-codeplatformsenablingcitizendeveloperstocreateand
managedataprocesses,improvequality,andensureintegrity—allcriticaltoanalytics—
withoutheavyITinvolvement.Byexpandingself-service,organizationscanbuildatrustedfoundationthatempowersmorepeopletoworkconfidentlywithdata.
Organizationscontinuetoprioritizeself-
serviceanalyticsasawaytoaccelerate
decision-makingandreduceITbottlenecks.Thistrendisimportanttothose
organizationsthatwanttomovebeyond
spreadsheetsandstaticdashboardstobuildananalyticsculture.Thisisoneinwhich
insightsarenotconfinedtoacentralizedteam,butinsteadareembeddedin
everydayworkflowsacrossdepartments.
Self-servicecanreducebottlenecks,
acceleratetimetoinsight,andfostergreatercollaborationbetweenbusinessandIT,withITenablingandgoverningtheenvironmentinthebackground.
Today,self-serviceisevolvingbeyond
simpleaccessandvisualizationtoincludemoreadvancedcapabilities.Solutionsarenowemergingthatsurfaceautomated
insights,guideusersthroughtheprocessofbuildingpredictivemodels,andembedmachinelearningwithinintuitiveinterfaces.
GenerativeAIisfurtheraccelerating
thisshiftbyprovidingnaturallanguage
interfacesfordata—allowinguserstoaskquestions,exploretrends,andgenerate
summarieswithoutneedingdeeptechnicalskills.Theseinnovationslowerthebarriertoentryforadvancedanalyticsandmightclosethegapbetweendataaccessand
meaningful,self-serviceinsight.Infact,theintegrationofgenerativeAIintoBIandAItoolsmaybecometheforcethatpropels
self-servicetoenterprise-widecapability.Benefitsofself-serviceinclude:
?Greateragilityandcollaboration.
Extendingself-serviceacrossthedatalifecycle,supportedbyautomation
andlow-codetools,createsashared
understandingacrossdepartments,
aligninggoalsandimproving
communication.Organizationsthat
embracethisculturearemoreagileandbetterequippedtoadapttodynamicmarketconditions.
?Improveddecision-making.Enabling
businessuserstodirectlyaccessdata
andanalyticstoolsimprovestheirabilitytomakereal-time,data-drivendecisions.ThisremovesdependenciesonITor
centralizeddatateams,accelerating
insightgeneration.Self-servicemakes
sensesincebusinessusersareclosesttothequestionsthatmatter.Empowering
themtoaskfollow-upquestions,performexploratoryanalysis,andtesthypothesesleadstobetterdecisions.Forexample,
marketingprofessionalsmayneedto
quicklyassessandexperimentwith
customerexperiencemetrics;theyrequire
StateofSelf-ServiceandAutomation3
fastaccesstoanalyticstomaketimely
improvementsthatcan’talwayswaitforIT.
?Employeeempowerment.Accessto
self-serviceanalyticssupportscontinuouslearning,skilldevelopment,andgreater
employeeengagementacrosstechnical
andnon-technicalroles.InTDWIresearch,we’veseenthatrespondentsbelieve
empoweringmoreuserswithanalytics
capabilitiesisimportanttoincreasingdatavalueandBIsuccess.ITteamsalsobenefitbyshiftingfromrepetitivedashboard
creationtomorestrategic,advancedtaskssuchasmachinelearning.Businessusersinfunctionssuchassalesandmarketinggainautonomytoanalyzeandactondataindependently.Thiscreatesmutualbenefitandimprovestheoverallorganizational
dataculture.
Thisisn’ttosaythateveryoneinthe
organizationshouldanalyzetheirdata.
Someemployeesmaynothaveananalyticsmindset.Theymaybeoverburdenedwithotherresponsibilitiesorsimplydon’tsee
thevalueofusingdatafordecisionsin
theirparticularjob.Thegoalofself-serviceshouldbetoensurethatthosewhoneeddatatodrivestrategicoroperational
decisionsareempoweredtouseit.
ForyearsinTDWIresearch,we’veseenthatself-serviceanalyticsisatoppriorityfor
organizations.Yetmanycompaniesseemtostruggletodemocratizetheiranalyticsefforts.Aswewillsee,therecanbe
numerousreasonsforthis,and,ofcourse,self-servicecapabilitiescontinuetoevolve.This“StateOf”analysisillustrateswheretherearestillgapstodayandprovides
Morecollaboration
Greateragility
Betterdecisions
Empoweredemployees
BenefitsofSelf-service
StateofSelf-ServiceandAutomation4
somebestpracticesforwhatitwilltaketomoveforward.
TheOverallStateofSelf-ServiceMaturity
Thereareanumberofinterrelatedfactors
thatinformthecurrentstateofself-service.Self-serviceisnotsimplyamatterofusing
avisualanalyticstoolagainstadatasetor
evenusinggenerativeAItogetanswersfromdatainanaturallanguageway.Itinvolves
people,processes,andtechnologies.It
involvesbeingabletoaccessdatainaself-servicemanner,analyzeit,andtrustthedata.Itrequiresdataliteracy,i.e.,users’ability
tounderstandandinteractwithdataandanalyticsandcommunicatetheresultstoachievebusinessgoals.
Inthesurveyforthisreport,welookedatfivedifferentfactorsforself-servicesuccess:
organizationalculture,datamanagement
toolsandprocesses,infrastructure,analyticsenablement,andgovernancefordataand
analytics.Thesurveyanswersweremeasured
ona5-pointscalefromleastmaturetomostmaturepractices.
Theresultsindicatethatorganizationsareprogressingsteadilytowardenablingself-serviceanalyticscapabilities,withanoverallaveragematurityscoreof3.31.
Theareasinwhichthemostrespondents’practiceswerethemostmatureinclude
strongcollaborationbetweenbusinessandITteams(meanscoreof3.8),broadtool
access(3.7),activeleadershipsupport(3.7),andarelativelyhighlevelofusertrustin
thedata(3.7),allofwhichareimportantforsuccessfulself-serviceinitiatives.
However,thedataalsohighlightsseveralareasthatrequirefurtherdevelopment.
Notably,theactualadoptionofadvancedanalyticstoolsremainslimited(mean
2.8maturityscore),andonlyasmall
proportionofbusinessusersareregularlyengaginginself-serviceanalytics,whichcansuggestuntappedpotentialin
expandinguserenablement.Additionally,governance,particularlyaroundemerging
Dimension
AverageScore(Outof5)
Organizationalculture
3.5
Datamanagementtoolsandprocesses
3.4
Infrastructure
3.3
Enablinganalytics
3.2
DataandAIgovernance
3.1
Figure1.Thedimensionsofself-serviceanalyticsmaturityandparticipants’
averagescoresforeachdimension.
StateofSelf-ServiceandAutomation5
Ourorganization'sleadershipprovidesactive
funding,strategy,andsupportforbuildingtrusted,
self-servicedataandanalyticscapabilities.
Stronglydisagree3%
Disagree13%
Neutral23%
Agree37%
Stronglyagree24%
Figure2.Basedon215respondents.
technologiessuchasgenerativeAI,lagsbehind—potentiallyindicatingtheneedfororganizationstostrengthentheir
frameworkstosupportinnovationwhileensuringdatacomplianceandsecurity(2.8,withamedianof2).
Theseinsightssuggestamoderatelystrongfoundationwithclearopportunitiesto
enhancethereach,depth,andgovernanceofself-serviceanalyticsacrosstheenterprise,especiallyasitcontinuestoevolve.
Respondents’strengthslieinstrategicintentandculturalalignment.Weaknessesare
moretechnicalandstructuralintermsofgovernancerigor,tooldiversity,andevenmetadatainfrastructure.
TheStateofOrganizationalCultureforSelf-Service
Organizationalcultureiscriticalformovingforwardwithself-service.Buildingthat
cultureoftenrequiresleadershipthatactivelysupportsself-serviceandcollaboration
betweenbusinessandIT.Astrongculture
canresultinalargenumberofusersmakingdata-drivendecisionsandbusinessusers
engaginginself-serviceanalytics.
IntheStateofSelf-Servicesurvey,over
halfofrespondentsstatedthattheir
organization’sleadershipprovidesactive
funding,strategy,andsupportforbuildingtrusted,self-servicedataandanalytics
capabilities(Figure2).Welloverhalf(66%)notedthatnon-technicalusersaswellas
businessanalystsanddatascientistsmakeuseofself-serviceanalyticstools(asidefromspreadsheets)intheircompany(notshown).Thissuggeststheemergenceofstrong
culturalsupportforself-service.Infact,thisareaofself-servicematurityhastheoverallhighestaverageacrossthefiveareas,anditissignificantlyhigherthanthelowest
averageingovernance.Thatisgoodnews.
Yetwidespreadadoptionofself-service
appearstobelaggingdespiteleadership
support(Figure3).Forexample,themajorityofrespondentsreportthatlessthan50%
ofbusinessuserscurrentlymakeuseof
StateofSelf-ServiceandAutomation6
Whatpercentofbusinessuserscurrentlymakeuseofself-serviceanalyticsinyourorganization?
22%
Lessthan
24%
11–25%
23%
26–45%
10%
16%
14%
46–65%Greater
than65%
Figure3.Basedon215respondents.
self-serviceanalytics.(Asstatedearlier,not
allbusinessusersnecessarilyneedtouse
self-service.)Therelativelylowscoreon
thepercentageofbusinessusersactually
performingself-serviceanalyticshighlightsareadinessvs.executiongap.Thismaybea
resultofinsufficienttrainingorenablement,toolcomplexity,orlackoftrustorconfidenceamongbusinessusers.Itmaybethat
respondentsperceivetheircultureasstrongerthanitisforactuallysupportingself-service.
InotherTDWIresearch,we’veseenthatwhilecertainexecutivesmaychampiondata-drivendecision-making,it’snot
uniformacrossleadership.We’veseenthatsometimesorganizationshave
aBIstrategy,butitisnoteffectively
communicated—inthatcase,manypeopledon’tunderstandthattherearetoolsin
placethatcanhelpthemorprogramsthatcanhelpwithdataliteracy.Andsometimespeoplejustresistchange.
Forinstance,inourBIandAImaturitymodelassessment,1weasked,“WouldyousaythatyourBIisdemocratized(i.e.,thatbusiness
usersaremakinguseofit)?”Themajority
(closeto60%)statedthatsomebusiness
usersactivelyuseBI,butadoptionisuneven.Inthesurveyforthisreport,whilethe
respondentsaverageda3.3maturityscoreindataliteracy,thislaggedbehindotherenablerssuchasleadershipsupport.Toolsmaybeavailable,buteverydaybusiness
usersaren’talwaysempowered,trained,ormotivatedtousethemeffectively.
Therealityisthatmanyorganizationsstill
donothaveongoingliteracyandsupportprogramstailoredfornon-technicalusers.Additionally,itmaybethatsomebusinessusersdon’twanttousetoolsforself-
service;theymaynotseetheneed,ortheydon’tfeelthetoolsareeasyenoughtouse.
1See
/pages/assessments/bi-all-bi-and-ai-maturity-model-
assessment.aspx
》resultsofthisassessmentarecurrentlyunpublished.
StateofSelf-ServiceandAutomation7
Withouthands-ontraining,onboarding,andsupport,businessusersmayfeel
intimidatedorunqualifiedtousetools
beyondspreadsheets.Giventhis,itmakes
sensefororganizationstotrytoimplement
dataliteracyprograms.Thesecanbe
targetedprogramsthatarepersona-driven(e.g.,tailoredtodifferentusergroups).
Formalchangemanagementprogramsmightalsobehelpful.
Ofcourse,vendorsarealsostartingtousegenerativeAIasafrontendforself-serviceanalyticsandsucheasy-to-usefrontends
mayhelpincreaseadoption.OrganizationsarealsotryingtousegenerativeAIforself-service.Thefirstphaseofthisappearstobeanalyzingunstructureddocumentssuchascallcenternotesorincidentreports.ThesearefedintoagenerativeAIsystem,and
userscanaskthesystemtoclassifythekindsofissuesfound,forinstance.
However,tousegenerativeAIagainst
traditionalstructureddata,thekindthatisoftenusedforBI(oreventooperationalizetheunstructuredusecases),willrequirea
strongerinfrastructure.AndevenifbusinessusersareutilizinggenerativeAIfrontends,theseuserswillstillneedtobedata-literatetoasktherightquestionsintherightwayandeffectivelyevaluatetheresults.
TheStateofDataMaturity
forSelf-Service
Organizationalcultureisclearlyimportantforself-servicematurity,butsuccess
requiresmore.Thedatainfrastructureneedstobeinplace.Usersneedtobeabletoingest,find,andconsumedata
foranalytics.Thedataneedstobeeasilyaccessibleandeasytounderstand.It
can’tbefragmentedthroughoutthe
organization.Inotherwords,data
managementandinfrastructurecan’tbeahindrance.
Surveyresultssuggestthatorganizations
are,onaverage,operatingatamoderatelevelofcapabilityacrossseveralimportantareasofdatamaturity.Respondents’
maturityscoresaveragedfrom3to3.7
acrossquestionsonautomateddata
integrationpipelines,dataqualitypractices,metadatamanagement,andtrustindata.Thelowestscoringquestionwasabout
theuseofametadata-drivendatacatalog,whichscoreda3,andthehighestscoringquestionwasaboutdatatrust(3.7).Also
highwerematurityscoresaboutusing
automateddataintegrationpipelines(3.6).
Automateddataintegrationpipelines
playanimportantroleindelivering
timely,consistent,andreliabledatafromvarioussourcesystemstodownstream
users.Thesepipelinescaneliminate
manualdatahandling,reduceerrors,andsupportnear-real-timeupdates,which
areespeciallyimportantinfast-paced
businessenvironments.Automationalsofreesuptechnicalresources,allowingdataengineersandITtofocusonoptimizationandgovernanceratherthanrepetitiveETLtasks.Whenthesepipelinesarerobust
andwell-managed,theyenablebusinessuserstoaccesscurrentandrelevant
datafordecision-making,whichisakeyfoundationalrequirementforanyself-serviceanalyticsinitiative.
StateofSelf-ServiceandAutomation8
Similarly,dataqualityprocessesensurethat
thedatabeingusedisaccurate,complete,consistent,andreliable.Poordataqualitycanleadtoflawedanalysesandincorrect
decisions—theoldgarbagein,garbageoutissue.Poordataqualitycanalsoultimatelyleadtoalackofconfidenceinself-serviceplatformsandadecreaseinusage.Inthissurvey,theuseofautomatedtoolsfordataqualitymanagementsuchasmonitoring
andobservabilitytoolswasnotyetwidespread(Figure4).
Organizationsreporting
highermaturityindataqualitytoolsalsotendtoreport
highertrustintheirdata.
However,thereappearstobeastrong
conceptuallinkbetweendataquality
practicesandtrustinthedata.Whiletheseareaskedasseparateitemsinthesurvey,
organizationsreportinghighermaturityin
dataqualitytoolsalsotendtoreporthighertrustintheirdata.Itispossiblethatwhen
usersbelieveintheintegrityoftheirdata,
theyaremorelikelytoengageinself-serviceanalytics.Wehaveanecdotalevidencethatoncetrustisbreached,individualsareless
likelytobelieveintheirdata.
Asmentioned,withtheadventofgenerativeAI,weseeorganizationswantingtoanalyzetheirunstructureddata(suchascallcenternotesortroubletickets)aswellastheir
structureddata.However,accordingto
TDWIsurveys,organizationslikelytrusttheirunstructureddatalessthantheirstructured
data.2Theyarenotusedtomanagingthisdatainawaythatsupportsanalytics.Theremaybedifferentdataqualitymetricsfor
unstructureddatathanstructureddata.
Forinstance,plausibilitymightbeanew
metricinunstructureddocuments.Likewise,metricssuchasaccuracymightmean
somethingdifferentinunstructuredtextdocumentsthaninstructureddatabases.
Thatmeansorganizationswillneedto
create,redefine,andrefinecertainmetrics.
Yetredefiningdata-qualitymetricsdoeslittlegoodunlessthosedefinitions,andthedatatheyqualify,aresystematicallycaptured,
cataloged,andgoverned.Thistiesclosely
withmetadatamanagement,whichprovidesuserswithcontextaboutthedata—whatit
means,howitwascollected,whenitwaslastupdated,andwhoisresponsibleforit.
Metadatasystems,suchasdatacatalogs
(whichscoredlowinaveragematurityhere),improvedatadiscoverabilityandhelp
withtransparency,allowinguserstomakeinformeddecisionsaboutdatause.Theyprovidevisibilitytothedata.ThisisinlinewithwhatTDWIhasseeninothersurveys;datacatalogsarebecomingmoreofa
priorityfororganizations.Iforganizationscannotfindandusedataforself-service
easily,thentheymostlikelywon’tadoptit.
TheStateofDataInfrastructureMaturityforSelf-Service
Asoliddatainfrastructureiscriticalforenablingself-serviceanalytics.Itensuresfast,scalableaccesstotrusteddata,
2Unpublished2025TDWIDataandAnalyticssurvey.
StateofSelf-ServiceandAutomation9
Doesyourorganizationhaveprocessesandtoolsinplacetoautomaticallydetect,correct,andmaintainhighdataqualityacrossallcriticaldatasources?
No,andwehavenoplanstoimplementthesetools
9%
Notyet,butitisonourradarforthisyear
26%
Weareintheprocessofimplementingthesenow
30%
Thesetoolsareinuseacrossourdataenvironment,andsomeareautomated
22%
Thesetoolsareinuseacrossourdata
environment,theyareautomated,andwegetreportsaboutthehealthofourdata
13%
Figure4.Basedon215respondents.
supportsdiversedatatypes(structuredandunstructured),andintegratesautomationtostreamlineanalyticsprocesses.Moderninfrastructurealsoplaysacriticalrolein
reducingITbottlenecks,empowering
businessusersacrossdepartmentsto
performtheirownanalysesandgenerateinsightsindependently.Weaskedabout
scalabilityandperformance,datadiversity,andautomationformodernization,and
userenablementandaccessibility.
Inthesurveyforthisreport,theinfrastructurecapabilitywiththehighestaveragematurityscorewastheabilitytosupportfast,scalableself-serviceaccessthroughmodernplatformssuchascloudandhybridenvironments,
withascoreof3.6.Incontrast,thelowest-scoringareawastheextenttowhich
businessusersbeyonddataanalysts,suchasthoseinoperations,marketing,orfinance,canindependentlyaccessandanalyze
datawithoutsignificantITsupport.This
capabilityreceivedanaveragescoreof3.2,suggestingthatwhileorganizationsmay
havethetechnicalinfrastructureinplace,broaderuserenablementremainsakey
areaforimprovement.Thisisanareathatrespondentsstatethattheyareworkingonnow,with38%statingthattheyaremovingtowardsenablingbusinessusersbeyond
dataanalyststoindependentlyaccessandanalyzedatawithoutsignificantITsupport(Figure5).
Toenablebusinessusersbeyonddata
analyststoindependentlyaccessdata,
organizationsshouldprovideintuitive,role-baseddataaccessmechanismsthatensureuserscaneasilyfind,understand,and
retrievethedatatheyneedwithouttechnicalbarriers.Thisincludesimplementingwell-
governeddatacatalogs,standardizeddatadefinitions,andintegrationwithbusinessapplicationstousedata.
StateofSelf-ServiceandAutomation10
Automatedtoolsisanotherareathatis
importantinthedatainfrastructure.Given
thecomplexityoftheinfrastructure,with
manydiversedatatypes,itisimportant
tobeabletoautomatesomedata
managementprocessessuchasthepipelineprocessormetadatamapping.Forty-five
percentofrespondentstothesurvey(Figure6)indicatedthattheirenvironmentleveragesautomationandmoderntechnologiessuchassmartdatapipelinesandcatalog-drivenaccessintheirinfrastructure.
Itmakessensethatorganizationsare
integratingautomationintotheirbroader
dataoperationsandbusinessprocesses
tosupportself-serviceinitiatives.These
capabilitiesenablefaster,moreaccurate
updatestoenterprisesystemsandreducetheerrorsassociatedwithmanual,repetitivedatatasks.IncomplexERPenvironments,
forinstance,automationcansignificantly
reducemanualdataentryandmaintenancebyenablingstructured,repeatable
workflowsformassupdatestomaster
Ourinfrastructure(e.g.,cloudplatforms,hybridenvironments,datafabrics)supportsfast,scalableself-servicedataaccessandanalyticsacrossthe
organization.
Stronglydisagree4%
Disagree
Neutral
Agree
12%
25%
38%
Stronglyagree21%
Canbusinessusersbeyonddataanalysts(e.g.,operations,marketing,finance)independentlyaccessandanalyzedatawithoutsignificantITsupport?
No,notatall12%
InsomecasestheyareusingExcelspreadsheetswithgenerativeAI
Wearemovinginthatdirectionnow38%
Thishasbeenimplemented,althoughweworryaboutguardrails
20%
13%
Thishasbeenimplemented,andisgovernedmm17%
Figure5.Basedon215responses.
StateofSelf-ServiceandAutomation11
andtransactionaldata.Theseautomation
solutionscanprovideintuitiveinterfacesthatallowbusinessuserstoinitiateandmanagedatachanges,suchasonboardingnew
suppliers,updatingmaterialsinformation,ormodifyingcustomerrecords.
TheStateofSelf-ServiceEnablement
Forself-servicetosucceed,users,
especiallynon-technicalones,needto
beequippedtoperformanalytics.This
includesaccesstoavarietyoftools,
includinglow-code/no-codeplatformsforautomatingandmanagingdataprocessesandgenerativeAIfrontendsfornatural
languageexploration,togetherwith
trainingandsupportprogramsandthe
abilitytoperformmoreadvancedanalyticstasks.Theaveragematurityscoresacross
thesesurveyquestionsrangedfrom3to
3.3,indicatingthatwhileprogressisbeingmade,thereisstillroomforimprovementinhowusersaresupportedandempowered.
Thehighest-scoringpracticeinthis
categoryconcernedtrainingandsupporttoenablenon-technicaluserstoperformself-serviceanalytics.Thisquestionreceived
anaveragescoreof3.3,suggestingthatorganizationsrecognizetheimportanceofuserenablementandhavebegun
implementingtraining.However,ascoreinthelowthreesstillpointstomoderatematurity,whereconsistencyanddepthof
Ourenvironmentleveragesautomationandmoderntechnologies(e.g.,smartdatapipelines,catalog-drivenaccess)tomakeself-servicefastandreliable.
Stronglydisagree
6%
Disagree
24%
Neutral
25%
Agree
27%
Stronglyagree
18%
Figure6.Basedon215respondents.
StateofSelf-ServiceandAutomation12
trainingmayvaryacrossbusinessunitsorusergroups.Lessthan50%believethattheirtrainingenablesnon-technicaluserstobesuccessfu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國化工用有機(jī)硅產(chǎn)品行業(yè)市場分析及投資價值評估前景預(yù)測報告
- 2025年中國護(hù)理和孕婦文胸行業(yè)市場分析及投資價值評估前景預(yù)測報告
- 2025年河北科技工程職業(yè)技術(shù)大學(xué)選聘工作人員52名考前自測高頻考點模擬試題及答案詳解1套
- 2025年江西省省直事業(yè)單位招聘工作人員筆試違紀(jì)違規(guī)處理意見模擬試卷及1套完整答案詳解
- 2025江蘇蘇州市吳江區(qū)引進(jìn)教育重點緊缺人才12人模擬試卷及完整答案詳解一套
- 2025年南平政和縣衛(wèi)健系統(tǒng)事業(yè)單位公開招聘緊缺急需專業(yè)工作人員模擬試卷完整答案詳解
- 2025年南平市供電服務(wù)有限公司招聘52人模擬試卷完整參考答案詳解
- 2025福建省福州第十八中學(xué)招聘工作人員1人考前自測高頻考點模擬試題及參考答案詳解一套
- 2025湖南邵陽市洞口縣黃橋鎮(zhèn)中心衛(wèi)生院面向社會公開招聘編外合同制影像(醫(yī)師)技師考前自測高頻考點模擬試題有答案詳解
- 2025第二季度重慶醫(yī)科大學(xué)附屬大學(xué)城醫(yī)院臨床醫(yī)技科室人員招聘考前自測高頻考點模擬試題帶答案詳解
- 2025年10月“江南十?!?026屆新高三第一次綜合素質(zhì)檢測 化學(xué)試卷(含答案詳解)
- 樁基沖擊鉆機(jī)施工方案
- 2025年七年級上學(xué)期語文第一個月月考試卷含答案
- 屠宰獸醫(yī)檢驗考試題及答案
- 月考試卷講評課課件
- 讀書分享讀書分享哈利波特
- 游戲:看表情符號猜成語PPT
- 影視鑒賞-第一章-影視鑒賞的基本概念
- 電廠安全生產(chǎn)運行管理培訓(xùn)課件
- 輸液室運用PDCA降低靜脈輸液患者外滲的發(fā)生率品管圈(QCC)活動成果
- 數(shù)星星的孩子習(xí)題精選及答案
評論
0/150
提交評論