




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
數學蘇教七年級下冊期末解答題壓軸測試試題經典套題答案一、解答題1.如圖,直線,、是、上的兩點,直線與、分別交于點、,點是直線上的一個動點(不與點、重合),連接、.(1)當點與點、在一直線上時,,,則_____.(2)若點與點、不在一直線上,試探索、、之間的關系,并證明你的結論.2.(1)如圖1,∠BAD的平分線AE與∠BCD的平分線CE交于點E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度數;(2)如圖2,∠BAD的平分線AE與∠BCD的平分線CE交于點E,∠ADC=α°,∠ABC=β°,求∠AEC的度數;(3)如圖3,PQ⊥MN于點O,點A是平面內一點,AB、AC交MN于B、C兩點,AD平分∠BAC交PQ于點D,請問的值是否發(fā)生變化?若不變,求出其值;若改變,請說明理由.3.(生活常識)射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等.如圖1,MN是平面鏡,若入射光線AO與水平鏡面夾角為∠1,反射光線OB與水平鏡面夾角為∠2,則∠1=∠2.(現象解釋)如圖2,有兩塊平面鏡OM,ON,且OM⊥ON,入射光線AB經過兩次反射,得到反射光線CD.求證AB∥CD.(嘗試探究)如圖3,有兩塊平面鏡OM,ON,且∠MON=55,入射光線AB經過兩次反射,得到反射光線CD,光線AB與CD相交于點E,求∠BEC的大小.(深入思考)如圖4,有兩塊平面鏡OM,ON,且∠MONα,入射光線AB經過兩次反射,得到反射光線CD,光線AB與CD所在的直線相交于點E,∠BED=β,α與β之間滿足的等量關系是.(直接寫出結果)4.已知在中,,點在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數;(2)如圖2,將沿射線的方向平移,當點在上時,求度數;(3)將在直線上平移,當以為頂點的三角形是直角三角形時,直接寫出度數.5.已知,如圖1,直線l2⊥l1,垂足為A,點B在A點下方,點C在射線AM上,點B、C不與點A重合,點D在直線11上,點A的右側,過D作l3⊥l1,點E在直線l3上,點D的下方.(1)l2與l3的位置關系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點C在射線AM上運動,∠BDC的角平分線交EB的延長線于點N,在點C的運動過程中,探索∠N:∠BCD的值是否變化,若變化,請說明理由;若不變化,請直接寫出比值.6.在△ABC中,∠ABC=∠ACB,點D在直線BC上(不與B、C重合),點E在直線AC上(不與A、C重合),且∠ADE=∠AED.(1)如圖1,若∠ABC=50°,∠AED=80°,則∠CDE=°,此時,=.(2)若點D在BC邊上(點B、C除外)運動(如圖1),試探究∠BAD與∠CDE的數量關系,并說明理由;(3)若點D在線段BC的延長線上,點E在線段AC的延長線上(如圖2),其余條件不變,請直接寫出∠BAD與∠CDE的數量關系:.(4)若點D在線段CB的延長線上(如圖3),點E在直線AC上,∠BAD=26°,其余條件不變,則∠CDE=(友情提醒:可利用圖3畫圖分析).7.我們知道:光線反射時,反射光線、入射光線分別在法線兩側,反射角等于入射角.如圖1,為一鏡面,為入射光線,入射點為點O,為法線(過入射點O且垂直于鏡面的直線),為反射光線,此時反射角等于入射角,由此可知等于.(1)兩平面鏡、相交于點O,一束光線從點A出發(fā),經過平面鏡兩次反射后,恰好經過點B.①如圖2,當為多少度時,光線?請說明理由.②如圖3,若兩條光線、所在的直線相交于點E,延長發(fā)現和分別為一個內角和一個外角的平分線,則與之間滿足的等量關系是_______.(直接寫出結果)(2)三個平面鏡、、相交于點M、N,一束光線從點A出發(fā),經過平面鏡三次反射后,恰好經過點E,請直接寫出、、與之間滿足的等量關系.8.已知:如圖1直線、被直線所截,.(1)求證:;(2)如圖2,點E在,之間的直線上,P、Q分別在直線、上,連接、,平分,平分,則和之間有什么數量關系,請直接寫出你的結論;(3)如圖3,在(2)的條件下,過P點作交于點H,連接,若平分,,求的度數.9.如圖,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC邊于點E.(1)如圖1,過點A作AD⊥BC于D,若已知∠C=50°,則∠EAD的度數為;(2)如圖2,過點A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度數;(3)如圖3,CF平分△ABC的外角∠BCG,交AE的延長線于點F,作FD⊥BC于D,設∠ACB=n°,試求∠DFE﹣∠AFC的值;(用含有n的代數式表示)(4)如圖4,在圖3的基礎上分別作∠BAE和∠BCF的角平分線,交于點F1,作F1D1⊥BC于D1,設∠ACB=n°,試直接寫出∠D1F1A﹣∠AF1C的值.(用含有n的代數式表示)10.已知E、D分別在的邊、上,C為平面內一點,、分別是、的平分線.(1)如圖1,若點C在上,且,求證:;(2)如圖2,若點C在的內部,且,請猜想、、之間的數量關系,并證明;(3)若點C在的外部,且,請根據圖3、圖4直接寫出結果出、、之間的數量關系.【參考答案】一、解答題1.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計算∠PFD即可;(2)根據點P是動點,分三種情況討論:①當點P在AB與CD之間時;②當點P在AB上方時;③當點P在CD下方時,分別求出∠AEP、∠EPF、∠CFP之間的關系即可.【詳解】(1)當點與點、在一直線上時,作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據點P是動點,分三種情況討論:①當點P在AB與CD之間時,過點P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當點P在AB上方時,如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當點P在CD下方時,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點睛】本題考查了平行線的性質,外角的性質,掌握平行線的性質是解題的關鍵,注意分情況討論問題.2.(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質,可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,則可得∠E=(∠D+∠B),繼而求得答案;(2)首先延長BC交AD于點F,由三角形外角的性質,可得∠BCD=∠B+∠BAD+∠D,又由角平分線的性質,即可求得答案.(3)由三角形內角和定理,可得,利用角平分線的性質與三角形的外角的性質可得答案.【詳解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延長BC交AD于點F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不發(fā)生變化,理由如下:如圖,記與交于,與交于,①,②,①-②得:AD平分∠BAC,【點睛】此題考查了三角形內角和定理、三角形外角的性質以及角平分線的定義.此題難度較大,注意掌握整體思想與數形結合思想的應用.3.【現象解釋】見解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現象解釋]根據平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【現象解釋】見解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現象解釋]根據平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可證得AB∥CD;[嘗試探究]根據三角形內角和定理求得∠2+∠3=125°,根據平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用平角的定義得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根據三角形內角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定義得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性質∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可證得β=2α.【詳解】[現象解釋]如圖2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【嘗試探究】如圖3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如圖4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【點睛】本題考查了平行線的判定,三角形外角的性質以及三角形內角和定理,熟練掌握三角形的性質是解題的關鍵.4.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內角互補,得出,即可得出結論;(2)先利用三角形的內角和定理求出,即可得出結論;(3)分和兩種情況求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內角互補,得出,即可得出結論;(2)先利用三角形的內角和定理求出,即可得出結論;(3)分和兩種情況求解即可得出結論.【詳解】解:(1),,,,,;(2)由(1)知,,,,,;(3)當時,如圖3,由(1)知,,;當時,如圖4,,點,重合,,,由(1)知,,,即當以、、為頂點的三角形是直角三角形時,度數為或.【點睛】此題是三角形綜合題,主要考查了平行線的性質,三角形的內角和定理,角的和差的計算,求出是解本題的關鍵.5.(1)互相平行;(2)35,20;(3)見解析;(4)不變,【分析】(1)根據平行線的判定定理即可得到結論;(2)根據角平分線的定義和平行線的性質即可得到結論;(3)根據角平分線的定義和平行解析:(1)互相平行;(2)35,20;(3)見解析;(4)不變,【分析】(1)根據平行線的判定定理即可得到結論;(2)根據角平分線的定義和平行線的性質即可得到結論;(3)根據角平分線的定義和平行線的性質即可得到結論;(4)根據角平分線的定義,平行線的性質,三角形外角的性質即可得到結論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點睛】本題考查了三角形的綜合題,三角形的內角和定理,三角形外角的性質,平行線的判定和性質,角平分線的定義,正確的識別圖形進行推理是解題的關鍵.6.(1)30,2;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內角和定理以及三角形的外角的性質解決問題即可;(2)結論:∠B解析:(1)30,2;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內角和定理以及三角形的外角的性質解決問題即可;(2)結論:∠BAD=2∠CDE.設∠B=∠C=x,∠AED=∠ADE=y,則∠BAC=180°-2x,∠CDE=yx,∠DAE=180°-2y,推出∠BAD=∠BAC-∠DAE=2y-2x=2(y-x),由此可得結論.(3)如圖②中,結論:∠BAD=2∠CDE.解決方法類似(2).(4)分兩種情形:①當點E在CA的延長線上,設∠ABC=∠C=x,∠AED=∠ADE=y,則∠BAC=180°-2x,∠CDE=180°-(y+x),∠DAE=180°-2y,由題意,∠BAD=180°-∠BAC-∠DAE=2x+2y-180°=22°,推出x+y=101°,可得結論.②如圖④中,當點E在AC的延長線上時,同法可求.【詳解】解:(1)如圖①中,∵∠ABC=∠ACB=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠AED=∠CDE+∠C,∴∠CDE=80°﹣50°=30°,∵∠ADE=∠AED=80°,∴∠DAE=180°﹣80°﹣80°=20°,∴∠BAD=∠BAC﹣∠DAE=80°﹣20°=60°,∴=2.故答案為30,2;(2)結論:∠BAD=2∠CDE.理由:設∠B=∠C=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=y(tǒng)﹣x,∠DAE=180°﹣2y,∴∠BAD=∠BAC﹣∠DAE=2y﹣2x=2(y﹣x),∴∠BAD=2∠CDE;(3)如圖②中,結論:∠BAD=2∠CDE.理由:設∠B=∠ACB=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=∠BAC+∠DAE=360°﹣2(x+y),∴∠BAD=2∠CDE.故答案為:∠BAD=2∠CDE;(4)如圖③中,設∠ABC=∠C=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=180°﹣∠BAC﹣∠DAE=2x+2y﹣180°=26°,∴x+y=103°∴∠CDE=180°﹣103°=77°.如圖④中,當點E在AC的延長線上時,設∠ABC=∠ACB=x,∠AED=∠ADE=y(tǒng),則∠ADB=x﹣26°,∠CDE=y(tǒng)﹣(x﹣26°),∵∠ACB=∠CDE+∠AED,∴x=y(tǒng)+y﹣(x﹣26°),∴x﹣y=13°,∴∠CDE=x﹣y=13°故答案為:77°或13°.【點睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質,三角形內角和定理,三角形的外角的性質等知識,解題的關鍵是學會利用參數解決問題,屬于中考??碱}型.7.(1)①90°,理由見解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據∠AMN+∠BNM=解析:(1)①90°,理由見解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據∠AMN+∠BNM=180°,可得α+β=90°,再根據三角形內角和定理進行計算即可;②設∠AMP=∠NMO=α,∠BNO=∠MNQ=β,根據三角形外角性質可得∠MEN=2(β-α),再根據三角形外角性質可得∠POQ=β-α,進而得出∠MEN=2∠POQ;(2)分別表示出∠M,∠N,∠BCD,利用四邊形內角和表示出∠BFD,再將∠M,∠N,∠BCD進行運算,變形得到∠BFD,即可得到關系式.【詳解】解:(1)①設∠AMP=∠NMO=α,∠BNQ=∠MNO=β,當AM∥BN時,∠AMN+∠BNM=180°,即180°-2α+180°-2β=180°,∴180°=2(α+β),∴α+β=90°,∴△MON中,∠O=180°-∠NMO-∠MNO=180°-(α+β)=90°,∴當∠POQ為90度時,光線AM∥NB;②設∠AMP=∠NMO=α,∠BNO=∠MNQ=β,∴∠AMN=180°-2α,∠MNE=180°-2β,∵∠AMN是△MEN的外角,∴∠MEN=∠AMN-∠MNE=(180°-2α)-(180°-2β)=2(β-α),∵∠MNQ是△MNO的外角,∴∠POQ=∠MNQ-∠NMO=β-α,∴∠MEN=2∠POQ;(2)設∠PBE=∠MBC=∠1,∠MCB=∠NCD=∠2,∠CDN=∠ADQ=∠3,可知:∠M=180°-∠1-∠2,∠N=180°-∠2-∠3,∠BCD=180°-2∠2,∵∠CBA=180°-2∠1,∠CDA=180°-2∠3,∴∠BFD=360°-∠CDA-∠CBA-∠BCD=360°-(180°-2∠1)-(180°-2∠2)-(180°-2∠3)=2(∠1+∠2+∠3)-180°又∵2(∠M+∠N)-∠BCD=2(180°-∠1-∠2+180°-∠2-∠3)-(180°-2∠2)=540°-2(∠1+∠2+∠3)=360°-[2(∠1+∠2+∠3)-180°]=360°-∠BFD∴2(∠M+∠N)-∠BCD=360°-∠BFD.【點睛】本題考查了平行線的判定與性質,三角形外角的性質以及多邊形內角和定理的綜合應用,解題時注意:兩直線平行,同旁內角互補;三角形的一個外角等于與它不相鄰的兩個內角的和.8.(1)證明見解析;(2),理由見解析;(3).【分析】(1)只需要證明即可證明;(2)作.由平行線的性質即可證明,同理可證明,由此再根據角平分線的定義和平角的性質可得;(3)設,.,則,想辦解析:(1)證明見解析;(2),理由見解析;(3).【分析】(1)只需要證明即可證明;(2)作.由平行線的性質即可證明,同理可證明,由此再根據角平分線的定義和平角的性質可得;(3)設,.,則,想辦法構建方程即可解決問題;【詳解】解:(1)如圖1中,,,,.(2)結論:如圖2中,.理由:作.,,,,,,,同理可證:,∵平分,平分,,,∵,,;(3)設,.,∵,∴,∵,∴,,,,平分,,,平分,,,,,,.【點睛】本題考查平行線的判定和性質,角平分線的定義等知識,(2)中能正確作出輔助線是解題關鍵;(3)中能熟練掌握相關性質,找到角度之間的關系是解題關鍵.9.(1)10°;(2)∠C的度數為70°;(3)∠DFE﹣∠AFC的值為;(4)∠D1F1A﹣∠AF1C的值為.【分析】(1)根據∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解決問題.解析:(1)10°;(2)∠C的度數為70°;(3)∠DFE﹣∠AFC的值為;(4)∠D1F1A﹣∠AF1C的值為.【分析】(1)根據∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解決問題.(2)設∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,利用三角形內角和定理構建方程求出x即可解決問題.(3)設∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,用n,x表示出∠DFE,∠AFC,再結合三角形內角和定理解決問題即可.(4)設∠FAC=∠FAB=y.用n,x表示出∠D1F1A,∠AF1C,再結合三角形內角和定理解決問題即可.【詳解】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AE平分∠BAC,∴∠CAE=∠BAC=50°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-50°=40°,∴∠EAD=∠EAC-∠DAC=50°-40°=10°.(2)設∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,∵AD⊥EC,∴∠ADE=∠ADC=90°,∴∠AED+∠EAD=90°,∠C+∠DAC=90°,∴∠AED=∠C=∠B+∠EAB=30°+2x,在△ABC中,由三角形內角和定理可得:30°+30°+2x+4x=180°,解得x=20°,∴∠C=30°+40°=70°.(3)設∠FAC=∠FAB=x.則有∠AEC=∠DEF=180°-n-x,∵FD⊥BC,∴∠FDE=90°,∴∠DFA=90°-(180°-n-x)=n+x-90°,∵CF平分∠BCG,∴∠FCG=(180°-n),∵∠AFC=∠FCG-∠FAC=(180°-n)-x=90°-n-x=15°,∴∠DFE-∠AFC=n+x-105°,∵2x+30°+n=180°,∴x=75°-n,∴∠DFE-∠AFC=n-30°.(4)設∠FAC=∠FAB=y.由題意同法可得:∠D1F1A=90°-(180°-n-y)=n+y-90°,∠AF1C=180°-y-n-(180°-n)=135°-y-n,∴∠D1F1A-∠AF1C=n+y-90°-(135°-y-n)=n+3y-225°,∵2y+30°+n=180°,∴y=75°-n,∴∠D1F1A-∠AF1C=n+y-90°-(135°-x-n)=n+225°-n-225°=n.【點睛】本題考查了三角形內角和定理,角平分線的定義,三角形的外角的性質等知識,解題的關鍵是學會利用參數解決問題,本題有一定的難度
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年國家開放大學(電大)《生態(tài)環(huán)境保護與可持續(xù)發(fā)展》期末考試備考試題及答案解析
- 餐飲崗前培訓考試題及答案解析
- 2025年國家開放大學(電大)《商業(yè)模式創(chuàng)新與經營管理》期末考試備考試題及答案解析
- 餐飲業(yè)加盟合作合同范本
- 2025年國家開放大學(電大)《外語視聽說》期末考試備考試題及答案解析
- 2025年國家開放大學《環(huán)境科學概論》期末考試備考試題及答案解析
- 北師大小學數學教案與課件設計
- 小學英語教師招聘歷年真題及解析
- 初中七年級英語期中考試試卷詳解
- 企業(yè)招聘面試流程標準與評估體系
- 家庭教育指導服務行業(yè):2025年家庭教育市場消費者行為分析報告
- 浙江龍泉南禹生物質燃料有限公司年產6萬噸廢棄竹木再生燃料顆粒生產線建設項目環(huán)評報告
- 武松的課件教學課件
- 蘇州加裝電梯協(xié)議書范本
- 大單元教學設計課件講解
- 城市市容管理課件
- 孝心教育主題班會
- 《鐵路運輸安全管理》課件-第三章 運輸安全管理事項
- 公證在綠色金融中的應用-洞察闡釋
- 肝囊腫的護理查房
- 公司廠房出租管理制度
評論
0/150
提交評論